Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Stem Cells ; 29(10): 1559-71, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21809420

RESUMEN

Murine neural stem cells (mNSCs), either naive or genetically modified to express supranormal levels of ß-galactocerebrosidase (GALC), were transplanted into the brain of Twitcher mice, a murine model of globoid cell leukodystrophy, a severe sphingolipidosis. Cells engrafted long-term into the host cytoarchitecture, producing functional GALC. Levels of enzyme activity in brain and spinal cord tissues were enhanced when GALC-overexpressing NSC were used. Enzymatic correction correlated with reduced tissue storage, decreased activation of astroglia and microglia, delayed onset of symptoms, and longer lifespan. Mechanisms underlying the therapeutic effect of mNSC included widespread enzyme distribution, cross-correction of host cells, anti-inflammatory activity, and neuroprotection. Similar cell engraftment and metabolic correction were reproduced using human NSC. Thus, NSC gene therapy rapidly reconstitutes sustained and long-lasting enzyme activity in central nervous system tissues. Combining this approach with treatments targeting the systemic disease associated with leukodystrophies may provide significant therapeutic benefit.


Asunto(s)
Encéfalo/enzimología , Galactosilceramidasa/metabolismo , Terapia Genética/métodos , Leucodistrofia de Células Globoides/terapia , Células-Madre Neurales/trasplante , Médula Espinal/enzimología , Animales , Encéfalo/patología , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Galactosilceramidasa/genética , Galactosilceramidasa/uso terapéutico , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucodistrofia de Células Globoides/enzimología , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Médula Espinal/patología , Trasplante de Células Madre , Transgenes
2.
J Neurochem ; 109(1): 135-47, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19166507

RESUMEN

In this work we showed that genotype-related patterns of hexosaminidase activity, isoenzyme composition, gene expression and ganglioside metabolism observed during embryonic and postnatal brain development are recapitulated during the progressive stages of neural precursor cell (NPC) differentiation to mature glia and neurons in vitro. Further, by comparing NPCs and their differentiated progeny established from Tay-Sachs (TS) and Sandhoff (SD) animal models with the wild-type counterparts, we studied the events linking the accumulation of undegraded substrates to hexosaminidase activity. We showed that similarly to what observed in brain tissues in TS NPCs and progeny, the stored GM2 was partially converted by sialidase to GA2, which can be then degraded in the lysosomes to its components. The latter can be used in a salvage pathway for the formation of GM3. Interestingly, results obtained from ganglioside feeding assays and from measurement of lysosomal sialidase activity suggest that a similar pathway might work also in the SD model.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Gangliosidosis GM2/metabolismo , Neuronas/metabolismo , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Encéfalo/patología , Diferenciación Celular/fisiología , Células Cultivadas , Gangliosidosis GM2/patología , Ratones , Ratones Mutantes Neurológicos , Neurogénesis/fisiología , Neuronas/patología , Células Madre/patología
3.
Stem Cells ; 26(2): 505-16, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17975226

RESUMEN

Recent studies have raised appealing possibilities of replacing damaged or lost neural cells by transplanting in vitro-expanded neural precursor cells (NPCs) and/or their progeny. Magnetic resonance (MR) tracking of superparamagnetic iron oxide (SPIO)-labeled cells is a noninvasive technique to track transplanted cells in longitudinal studies on living animals. Murine NPCs and human mesenchymal or hematopoietic stem cells can be efficiently labeled by SPIOs. However, the validation of SPIO-based protocols to label human neural precursor cells (hNPCs) has not been extensively addressed. Here, we report the development and validation of optimized protocols using two SPIOs (Sinerem and Endorem) to label human hNPCs that display bona fide stem cell features in vitro. A careful titration of both SPIOs was required to set the conditions resulting in efficient cell labeling without impairment of cell survival, proliferation, self-renewal, and multipotency. In vivo magnetic resonance imaging (MRI) combined with histology and confocal microscopy indicated that low numbers (5 x 10(3) to 1 x 10(4)) of viable SPIO-labeled hNPCs could be efficiently detected in the short term after transplantation in the adult murine brain and could be tracked for at least 1 month in longitudinal studies. By using this approach, we also clarified the impact of donor cell death to the MR signal. This study describes a simple protocol to label NPCs of human origin using SPIOs at optimized low dosages and demonstrates the feasibility of noninvasive imaging of labeled cells after transplantation in the brain; it also evidentiates potential limitations of the technique that have to be considered, particularly in the perspective of neural cell-based clinical applications.


Asunto(s)
Hierro/farmacocinética , Neuronas/citología , Neuronas/metabolismo , Óxidos/farmacocinética , Células Madre/citología , Células Madre/metabolismo , Animales , Trasplante de Tejido Encefálico , Medios de Contraste/farmacocinética , Dextranos , Óxido Ferrosoférrico , Humanos , Imagen por Resonancia Magnética , Magnetismo , Nanopartículas de Magnetita , Ratones , Ratones SCID , Neuronas/trasplante , Trasplante de Células Madre , Trasplante Heterólogo
4.
Eur J Cancer ; 43(5): 935-46, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17320377

RESUMEN

The failure to eradicate most cancers and in particular melanoma may be as fundamental as a misidentification of the target. The identification of cancer stem/initiating cells within the tumour population with a crucial role for tumour formation may open new pharmacological perspectives. Our data show three main novelties for human melanoma: firstly, melanoma biopsy contains a subset of cells expressing CD133 (CD133+) and the latter is able to develop a Mart-1 positive tumour in NOD-SCID mice. Secondly, the WM115, a human melanoma cell line, has been found to express both CD133 and ABCG2 markers. This cell line grows as floating spheroids, expresses typical progenitors and mature neuronal/oligodendrocyte markers and is able to transdifferentiate into astrocytes or mesenchymal lineages under specific growth conditions. As in xenografts generated with CD133+ biopsy melanoma cells, those produced by the cell line displayed lower levels of CD133 and ABCG2. Thirdly, the WM115 cells express the most important angiogenic and lymphoangiogenic factors such as notch 4, prox1 and podoplanin which can cooperate in the development of the tumourigenic capability of melanoma in vivo. Therefore, in this study, we demonstrate the presence of stem/initiating subsets in melanoma both in biopsy and in an established melanoma cell line grown in vitro and in xenografts. Interestingly, considering that melanoma gives metastasis primarily through lymphatic vessels, herein, we demonstrated that a melanoma cell line expresses typical lymphoangiogenic factors.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Péptidos/metabolismo , Neoplasias Cutáneas/metabolismo , Antígeno AC133 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Biomarcadores/metabolismo , Western Blotting , Inmunohistoquímica/métodos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neovascularización Patológica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Trasplante Heterólogo , Células Tumorales Cultivadas
5.
Stem Cells Transl Med ; 6(2): 352-368, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28191778

RESUMEN

Allogeneic fetal-derived human neural stem cells (hfNSCs) that are under clinical evaluation for several neurodegenerative diseases display a favorable safety profile, but require immunosuppression upon transplantation in patients. Neural progenitors derived from patient-specific induced pluripotent stem cells (iPSCs) may be relevant for autologous ex vivo gene-therapy applications to treat genetic diseases with unmet medical need. In this scenario, obtaining iPSC-derived neural stem cells (NSCs) showing a reliable "NSC signature" is mandatory. Here, we generated human iPSC (hiPSC) clones via reprogramming of skin fibroblasts derived from normal donors and patients affected by metachromatic leukodystrophy (MLD), a fatal neurodegenerative lysosomal storage disease caused by genetic defects of the arylsulfatase A (ARSA) enzyme. We differentiated hiPSCs into NSCs (hiPS-NSCs) sharing molecular, phenotypic, and functional identity with hfNSCs, which we used as a "gold standard" in a side-by-side comparison when validating the phenotype of hiPS-NSCs and predicting their performance after intracerebral transplantation. Using lentiviral vectors, we efficiently transduced MLD hiPSCs, achieving supraphysiological ARSA activity that further increased upon neural differentiation. Intracerebral transplantation of hiPS-NSCs into neonatal and adult immunodeficient MLD mice stably restored ARSA activity in the whole central nervous system. Importantly, we observed a significant decrease of sulfatide storage when ARSA-overexpressing cells were used, with a clear advantage in those mice receiving neonatal as compared with adult intervention. Thus, we generated a renewable source of ARSA-overexpressing iPSC-derived bona fide hNSCs with improved features compared with clinically approved hfNSCs. Patient-specific ARSA-overexpressing hiPS-NSCs may be used in autologous ex vivo gene therapy protocols to provide long-lasting enzymatic supply in MLD-affected brains. Stem Cells Translational Medicine 2017;6:352-368.


Asunto(s)
Técnicas de Reprogramación Celular , Reprogramación Celular , Cerebrósido Sulfatasa/biosíntesis , Terapia Genética/métodos , Células Madre Pluripotentes Inducidas/trasplante , Leucodistrofia Metacromática/cirugía , Células-Madre Neurales/trasplante , Trasplante de Células Madre/métodos , Animales , Diferenciación Celular , Línea Celular , Movimiento Celular , Cerebrósido Sulfatasa/genética , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Inducción Enzimática , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Leucodistrofia Metacromática/enzimología , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/fisiopatología , Ratones Endogámicos NOD , Ratones SCID , Regeneración Nerviosa , Células-Madre Neurales/enzimología , Fenotipo , Sulfoglicoesfingolípidos/metabolismo , Transcriptoma
6.
Neurobiol Aging ; 25(9): 1187-96, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15312964

RESUMEN

Dysregulation of calcium homeostasis is among the major cellular alterations in Alzheimer's disease (AD). We studied Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II), one of the major effectors regulating neuronal responses to changes in calcium fluxes, in cultured skin fibroblasts from subjects with sporadic AD. We found, by using PCR and Western analysis, that human fibroblasts express the delta-isoform of this kinase, and that CaM kinase II is the major Ca(2+)/calmodulin-dependent kinase in these cells. Protein expression level of the kinase was not significantly different in AD fibroblasts. However, the total activity of the kinase (stimulated by Ca(2+)/calmodulin) was significantly reduced in AD cell lines, whereas Ca(2+)-independent activity was significantly enhanced. The percent autonomy of the kinase (%Ca(2+)-independent/Ca(2+)-dependent activity) in AD cell lines was 62.8%, three-fold the corresponding percentage in control fibroblasts. The abnormal calcium-independent activity was not due to enhanced basal autophosphorylation of Thr(287). The observed abnormalities, if present in brain tissue, may be implicated either in dysfunction of neuroplasticity and cognitive functions or in dysregulation of cell cycle.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Señalización del Calcio/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Fibroblastos/enzimología , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/efectos de los fármacos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Calmodulina/metabolismo , Calmodulina/farmacología , Células Cultivadas , Trastornos del Conocimiento/enzimología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/fisiopatología , Femenino , Fibroblastos/citología , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Persona de Mediana Edad , Plasticidad Neuronal/genética , Fosforilación , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Treonina/metabolismo
7.
Methods Mol Biol ; 1059: 25-40, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23934831

RESUMEN

Due to the complexity of the NSC niche organization, the lack of specific NSC markers and the difficulty of long-term tracking these cells and their progeny in vivo the functional properties of the endogenous NSCs remain largely unexplored. These limitations have led to the development of methodologies to efficiently isolate, expand, and differentiate NSCs ex vivo. We describe here the peculiarities of the neurosphere assay (NSA) as a methodology that allows to efficiently isolate, expand, and differentiate somatic NSCs derived from the adult forebrain periventricular region while preserving proliferation, self-renewal, and multipotency, the main attributes that provide their functional identification.


Asunto(s)
Células-Madre Neurales/fisiología , Cultivo Primario de Células , Esferoides Celulares/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Separación Celular , Ventrículos Cerebrales/citología , Criopreservación , Medios de Cultivo , Disección , Humanos , Ratones , Ratones Endogámicos C57BL , Nicho de Células Madre
8.
PLoS One ; 5(4): e10145, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20405042

RESUMEN

BACKGROUND: Cell-based therapy holds great promises for demyelinating diseases. Human-derived fetal and adult oligodendrocyte progenitors (OPC) gave encouraging results in experimental models of dysmyelination but their limited proliferation in vitro and their potential immunogenicity might restrict their use in clinical applications. Virtually unlimited numbers of oligodendroglial cells could be generated from long-term self-renewing human (h)-derived neural stem cells (hNSC). However, robust oligodendrocyte production from hNSC has not been reported so far, indicating the need for improved understanding of the molecular and environmental signals controlling hNSC progression through the oligodendroglial lineage. The aim of this work was to obtain enriched and renewable cultures of hNSC-derived oligodendroglial cells by means of epigenetic manipulation. METHODOLOGY/PRINCIPAL FINDINGS: We report here the generation of large numbers of hNSC-derived oligodendroglial cells by concurrent/sequential in vitro exposure to combinations of growth factors (FGF2, PDGF-AA), neurotrophins (NT3) and hormones (T3). In particular, the combination FGF2+NT3+PDGF-AA resulted in the maintenance and enrichment of an oligodendroglial cell population displaying immature phenotype (i.e., proliferation capacity and expression of PDGFRalpha, Olig1 and Sox10), limited self-renewal and increased migratory activity in vitro. These cells generate large numbers of oligodendroglial progeny at the early stages of maturation, both in vitro and after transplantation in models of CNS demyelination. CONCLUSIONS/SIGNIFICANCE: We describe a reliable method to generate large numbers of oligodendrocytes from a renewable source of somatic, non-immortalized NSC from the human foetal brain. We also provide insights on the mechanisms underlying the pro-oligodendrogenic effect of the treatments in vitro and discuss potential issues responsible for the limited myelinating capacity shown by hNSC-derived oligodendrocytes in vivo.


Asunto(s)
Enfermedades Desmielinizantes/terapia , Supervivencia de Injerto , Oligodendroglía/trasplante , Trasplante de Células Madre/métodos , Animales , Técnicas de Cultivo de Célula , Humanos , Ratones , Modelos Animales , Células Madre Multipotentes/citología , Neuronas/citología , Oligodendroglía/citología , Trasplante Heterólogo
9.
Glia ; 53(2): 167-81, 2006 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16206164

RESUMEN

Aquaporins (AQP) are water channel proteins that play important roles in the regulation of water homeostasis in physiological and pathological conditions. AQP4 and AQP9, the main aquaporin subtypes in the brain, are expressed in the adult forebrain subventricular zone (SVZ), where neural stem cells (NSCs) reside, but little is known about their expression and role in the NSC population, either in vivo or in vitro. Also, no reports are available on the presence of these proteins in human NSCs. We performed a detailed molecular and phenotypical characterization of different AQPs, and particularly AQP4 and AQP9, in murine and human NSC cultures at predetermined stages of differentiation. We demonstrated that AQP4 and AQP9 are expressed in adult murine SVZ-derived NSCs (ANSCs) and that their levels of expression and cellular localization are differentially regulated upon ANSC differentiation into neurons and glia. AQP4 (but not AQP9) is expressed in human NSCs and their progeny. The presence of AQP4 and AQP9 in different subsets of ANSC-derived glial cells and in different cellular compartments suggests different roles of the two proteins in these cells, indicating that ANSC-derived astrocytes might maintain in vitro the heterogeneity that characterize the astrocyte-like cell populations in the SVZ in vivo. The development of therapeutic strategies based on modulation of AQP function relies on a better knowledge of the functional role of these channels in brain cells. We provide a reliable and standardized in vitro experimental model to perform functional studies as well as toxicological and pharmacological screenings.


Asunto(s)
Acuaporina 4/biosíntesis , Acuaporinas/biosíntesis , Neuroglía/metabolismo , Neuronas/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Neuroglía/ultraestructura , Neuronas/ultraestructura , Prosencéfalo/citología , Prosencéfalo/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/ultraestructura , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA