Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(32): E7642-E7649, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038024

RESUMEN

SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In ß-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic ß-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced ß-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of ß-cells to secrete insulin under hyperglycemic conditions.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transportador 8 de Zinc/genética , Alelos , Animales , Glucemia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Hiperglucemia/sangre , Hiperglucemia/inducido químicamente , Hiperglucemia/metabolismo , Secreción de Insulina , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/farmacología , Receptor de Insulina/antagonistas & inhibidores , Receptor de Insulina/metabolismo , Transportador 8 de Zinc/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(10): 2753-2758, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115707

RESUMEN

Inactivating mutations in the insulin receptor results in extreme insulin resistance. The resulting hyperglycemia is very difficult to treat, and patients are at risk for early morbidity and mortality from complications of diabetes. We used the insulin receptor antagonist S961 to induce severe insulin resistance, hyperglycemia, and ketonemia in mice. Using this model, we show that glucagon receptor (GCGR) inhibition with a monoclonal antibody normalized blood glucose and ß-hydroxybutyrate levels. Insulin receptor antagonism increased pancreatic ß-cell mass threefold. Normalization of blood glucose levels with GCGR-blocking antibody unexpectedly doubled ß-cell mass relative to that observed with S961 alone and 5.8-fold over control. GCGR antibody blockage expanded α-cell mass 5.7-fold, and S961 had no additional effects. Collectively, these data show that GCGR antibody inhibition represents a potential therapeutic option for treatment of patients with extreme insulin-resistance syndromes.


Asunto(s)
Diabetes Mellitus Experimental/genética , Glucagón/metabolismo , Resistencia a la Insulina/genética , Receptor de Insulina/genética , Receptores de Glucagón/genética , Ácido 3-Hidroxibutírico/metabolismo , Animales , Glucemia/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Glucagón/genética , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Cetosis/genética , Cetosis/metabolismo , Cetosis/patología , Ratones , Mutación , Péptidos/farmacología , Receptores de Glucagón/antagonistas & inhibidores
3.
Proc Natl Acad Sci U S A ; 114(10): 2747-2752, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28143927

RESUMEN

Genetic disruption or pharmacologic inhibition of glucagon signaling effectively lowers blood glucose but results in compensatory glucagon hypersecretion involving expansion of pancreatic α-cell mass. Ben-Zvi et al. recently reported that angiopoietin-like protein 4 (Angptl4) links glucagon receptor inhibition to hyperglucagonemia and α-cell proliferation [Ben-Zvi et al. (2015) Proc Natl Acad Sci USA 112:15498-15503]. Angptl4 is a secreted protein and inhibitor of lipoprotein lipase-mediated plasma triglyceride clearance. We report that Angptl4-/- mice treated with an anti-glucagon receptor monoclonal antibody undergo elevation of plasma glucagon levels and α-cell expansion similar to wild-type mice. Overexpression of Angptl4 in liver of mice caused a 8.6-fold elevation in plasma triglyceride levels, but did not alter plasma glucagon levels or α-cell mass. Furthermore, administration of glucagon receptor-blocking antibody to healthy individuals increased plasma glucagon and amino acid levels, but did not change circulating Angptl4 concentration. These data show that Angptl4 does not link glucagon receptor inhibition to compensatory hyperglucagonemia or expansion of α-cell mass, and that it cannot be given to induce such secretion and growth. The reduction of plasma triglyceride levels in Angptl4-/- mice and increase following Angptl4 overexpression suggest that changes in plasma triglyceride metabolism do not regulate α-cells in the pancreas. Our findings corroborate recent data showing that increased plasma amino acids and their transport into α-cells link glucagon receptor blockage to α-cell hyperplasia.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/genética , Glucagón/metabolismo , Hiperplasia/genética , Metabolismo de los Lípidos/genética , Animales , Glucemia/genética , Proliferación Celular/genética , Glucagón/genética , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Humanos , Hiperplasia/sangre , Hiperplasia/patología , Lipoproteínas/sangre , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Receptores de Glucagón/genética , Transducción de Señal/genética , Triglicéridos/sangre
4.
Proc Natl Acad Sci U S A ; 113(12): 3293-8, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26951663

RESUMEN

This study provides an assessment of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. The system combines microfluidic technology and nanoliter-scale reactions. We sequenced 622 cells, allowing identification of 341 islet cells with high-quality gene expression profiles. The cells clustered into populations of α-cells (5%), ß-cells (92%), δ-cells (1%), and pancreatic polypeptide cells (2%). We identified cell-type-specific transcription factors and pathways primarily involved in nutrient sensing and oxidation and cell signaling. Unexpectedly, 281 cells had to be removed from the analysis due to low viability, low sequencing quality, or contamination resulting in the detection of more than one islet hormone. Collectively, we provide a resource for identification of high-quality gene expression datasets to help expand insights into genes and pathways characterizing islet cell types. We reveal limitations in the C1 Fluidigm cell capture process resulting in contaminated cells with altered gene expression patterns. This calls for caution when interpreting single-cell transcriptomics data using the C1 Fluidigm system.


Asunto(s)
Islotes Pancreáticos/metabolismo , Análisis de Secuencia de ARN/métodos , Animales , Islotes Pancreáticos/citología , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo
5.
Endocrinology ; 162(1)2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33206168

RESUMEN

The liver plays a critical role in maintaining ammonia homeostasis. Urea cycle defects, liver injury, or failure and glutamine synthetase (GS) deficiency result in hyperammonemia, serious clinical conditions, and lethality. In this study we used a mouse model with a defect in the urea cycle enzyme ornithine transcarbamylase (Otcspf-ash) to test the hypothesis that glucagon receptor inhibition using a monoclonal blocking antibody will reduce the hyperammonemia and associated lethality induced by a high-protein diet, which exacerbates disease. We found reduced expression of glutaminase, which degrades glutamine and increased expression of GS in livers of Otcspf-ash mice treated with the glucagon receptor blocking antibody. The gene expression changes favor ammonia consumption and were accompanied by increased circulating glutamine levels and diminished hyperammonemia. Otcspf-ash mice treated with the glucagon receptor-blocking antibody gained lean and body mass and had increased survival. These data suggest that glucagon receptor inhibition using a monoclonal antibody could reduce the risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle, liver injury, or failure and GS deficiency.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Hiperamonemia/terapia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Receptores de Glucagón/antagonistas & inhibidores , Aminoácidos/sangre , Amoníaco/sangre , Animales , Peso Corporal , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutaminasa/genética , Glutaminasa/metabolismo , Masculino , Ratones , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/mortalidad
6.
Endocrinology ; 160(5): 979-988, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30938753

RESUMEN

Plasma amino acids and their transporters constitute an important part of the feedback loop between the liver and pancreatic α-cell function, and glucagon regulates hepatic amino acid turnover. Disruption of hepatic glucagon receptor action activates the loop and results in high plasma amino acids and hypersecretion of glucagon associated with α-cell hyperplasia. In the present study, we report a technique to rescue implanted human pancreatic islets from the mouse kidney capsule. Using this model, we have demonstrated that expression of the amino acid transporter SLC38A4 increases in α-cells after administration of a glucagon receptor blocking antibody. The increase in SLC38A4 expression and associated α-cell proliferation was dependent on mechanistic target of rapamycin pathway. We confirmed increased α-cell proliferation and expression of SLC38A4 in pancreas sections from patients with glucagon cell hyperplasia and neoplasia (GCHN) with loss-of-function mutations in the glucagon receptor. Collectively, using a technique to rescue implanted human islets from the kidney capsule in mice and pancreas sections from patients with GCHN, we found that expression of SLC38A4 was increased under conditions of disrupted glucagon receptor signaling. These data provide support for the existence of a liver-human α-cell endocrine feedback loop.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Receptores de Glucagón/metabolismo , Adulto , Sistema de Transporte de Aminoácidos A/genética , Animales , Proliferación Celular/genética , Femenino , Células Secretoras de Glucagón/citología , Humanos , Hiperplasia/sangre , Hiperplasia/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Receptores de Glucagón/genética , Transducción de Señal , Trasplante Heterólogo
7.
Nat Commun ; 8: 15153, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28452368

RESUMEN

Growth and differentiation factor 8 (GDF8) is a TGF-ß superfamily member, and negative regulator of skeletal muscle mass. GDF8 inhibition results in prominent muscle growth in mice, but less impressive hypertrophy in primates, including man. Broad TGF-ß inhibition suggests another family member negatively regulates muscle mass, and its blockade enhances muscle growth seen with GDF8-specific inhibition. Here we show that activin A is the long-sought second negative muscle regulator. Activin A specific inhibition, on top of GDF8 inhibition, leads to pronounced muscle hypertrophy and force production in mice and monkeys. Inhibition of these two ligands mimics the hypertrophy seen with broad TGF-ß blockers, while avoiding the adverse effects due to inhibition of multiple family members. Altogether, we identify activin A as a second negative regulator of muscle mass, and suggest that inhibition of both ligands provides a preferred therapeutic approach, which maximizes the benefit:risk ratio for muscle diseases in man.


Asunto(s)
Activinas/metabolismo , Hipertrofia/patología , Hipotonía Muscular/patología , Músculo Esquelético/crecimiento & desarrollo , Miostatina/metabolismo , Receptores de Activinas Tipo II/metabolismo , Activinas/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Índice de Masa Corporal , Dexametasona/farmacología , Humanos , Contracción Isométrica/fisiología , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Músculo Esquelético/fisiología , Miostatina/antagonistas & inhibidores , Ratas
8.
Cell Metab ; 25(6): 1348-1361.e8, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591637

RESUMEN

Glucagon supports glucose homeostasis by stimulating hepatic gluconeogenesis, in part by promoting the uptake and conversion of amino acids into gluconeogenic precursors. Genetic disruption or pharmacologic inhibition of glucagon signaling results in elevated plasma amino acids and compensatory glucagon hypersecretion involving expansion of pancreatic α cell mass. Recent findings indicate that hyperaminoacidemia triggers pancreatic α cell proliferation via an mTOR-dependent pathway. We confirm and extend these findings by demonstrating that glucagon pathway blockade selectively increases expression of the sodium-coupled neutral amino acid transporter Slc38a5 in a subset of highly proliferative α cells and that Slc38a5 controls the pancreatic response to glucagon pathway blockade; most notably, mice deficient in Slc38a5 exhibit markedly decreased α cell hyperplasia to glucagon pathway blockade-induced hyperaminoacidemia. These results show that Slc38a5 is a key component of the feedback circuit between glucagon receptor signaling in the liver and amino-acid-dependent regulation of pancreatic α cell mass in mice.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Receptores de Glucagón/metabolismo , Transducción de Señal , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Glucagón/genética , Células Secretoras de Glucagón/patología , Hiperplasia , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Receptores de Glucagón/genética
9.
Endocrinology ; 157(9): 3431-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27466694

RESUMEN

Aging improves pancreatic ß-cell function in mice. This is a surprising finding because aging is typically associated with functional decline. We performed single-cell RNA sequencing of ß-cells from 3- and 26-month-old mice to explore how changes in gene expression contribute to improved function with age. The old mice were healthy and had reduced blood glucose levels and increased ß-cell mass, which correlated to their body weight. ß-Cells from young and old mice had similar transcriptome profiles. In fact, only 193 genes (0.89% of all detected genes) were significantly regulated (≥2-fold; false discovery rate < 0.01; normalized counts > 5). Of these, 183 were down-regulated and mainly associated with pathways regulating gene expression, cell cycle, cell death, and survival as well as cellular movement, function, and maintenance. Collectively our data show that ß-cells from very old mice have transcriptome profiles similar to those of young mice. These data support previous findings that aging is not associated with reduced ß-cell mass or functional ß-cell decline in mice.


Asunto(s)
Envejecimiento/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Senescencia Celular , Glucosa/metabolismo , Homeostasis , Masculino , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Transcriptoma
10.
Endocrinology ; 156(8): 2781-94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26020795

RESUMEN

Antagonizing glucagon action represents an attractive therapeutic option for reducing hepatic glucose production in settings of hyperglycemia where glucagon excess plays a key pathophysiological role. We therefore generated REGN1193, a fully human monoclonal antibody that binds and inhibits glucagon receptor (GCGR) signaling in vitro. REGN1193 administration to diabetic ob/ob and diet-induced obese mice lowered blood glucose to levels observed in GCGR-deficient mice. In diet-induced obese mice, REGN1193 reduced food intake, adipose tissue mass, and body weight. REGN1193 increased circulating levels of glucagon and glucagon-like peptide 1 and was associated with reversible expansion of pancreatic α-cell area. Hyperglucagonemia and α-cell hyperplasia was observed in fibroblast growth factor 21-deficient mice treated with REGN1193. Single administration of REGN1193 to diabetic cynomolgus monkeys normalized fasting blood glucose and glucose tolerance and increased circulating levels of glucagon and amino acids. Finally, administration of REGN1193 for 8 weeks to normoglycemic cynomolgus monkeys did not cause hypoglycemia or increase pancreatic α-cell area. In summary, the GCGR-blocking antibody REGN1193 normalizes blood glucose in diabetic mice and monkeys but does not produce hypoglycemia in normoglycemic monkeys. Thus, REGN1193 provides a potential therapeutic modality for diabetes mellitus and acute hyperglycemic conditions.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Receptores de Glucagón/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Glucemia/metabolismo , Diabetes Mellitus Experimental/complicaciones , Femenino , Factores de Crecimiento de Fibroblastos/genética , Humanos , Hipoglucemiantes/farmacología , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/patología , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/genética
11.
Endocrinology ; 156(12): 4502-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26406932

RESUMEN

Secreted frizzled-related protein 4 (SFRP4) is an extracellular regulator of the wingless-type mouse mammary tumor virus integration site family (WNT) pathway. SFRP4 has been implicated in adipocyte dysfunction, obesity, insulin resistance, and impaired insulin secretion in patients with type 2 diabetes. However, the exact role of SFRP4 in regulating whole-body metabolism and glucose homeostasis is unknown. We show here that male Sfrp4(-/-) mice have increased spine length and gain more weight when fed a high-fat diet. The body composition and body mass per spine length of diet-induced obese Sfrp4(-/-) mice is similar to wild-type littermates, suggesting that the increase in body weight can be accounted for by their longer body size. The diet-induced obese Sfrp4(-/-) mice have reduced energy expenditure, food intake, and bone mineral density. Sfrp4(-/-) mice have normal glucose and insulin tolerance and ß-cell mass. Diet-induced obese Sfrp4(-/-) and control mice show similar impairments of glucose tolerance and a 5-fold compensatory expansion of their ß-cell mass. In summary, our data suggest that loss of SFRP4 alters body length and bone mineral density as well as energy expenditure and food intake. However, SFRP4 does not control glucose homeostasis and ß-cell mass in mice.


Asunto(s)
Tamaño Corporal/genética , Densidad Ósea/genética , Dieta Alta en Grasa , Ingestión de Alimentos/genética , Metabolismo Energético/genética , Células Secretoras de Insulina/metabolismo , Obesidad , Proteínas Proto-Oncogénicas/genética , Animales , Glucemia/metabolismo , Composición Corporal/genética , Conducta Alimentaria , Técnicas de Sustitución del Gen , Prueba de Tolerancia a la Glucosa , Células HEK293 , Homeostasis/genética , Humanos , Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Vía de Señalización Wnt , Microtomografía por Rayos X
12.
Psychopharmacology (Berl) ; 217(2): 199-210, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21487659

RESUMEN

RATIONALE: Nicotinic acetylcholine receptor (nAChR) agonists, partial agonists, and antagonists have antidepressant-like effects in rodents and reduce symptoms of depression in humans. OBJECTIVES: The study determined whether the antidepressant-like effect of the nAChR ß2* partial agonist sazetidine-A (sazetidine) in the forced swim test was due to activation or desensitization of ß2* nAChRs. The study also determined if sazetidine's behavioral responses in the forced swim test corresponded to ß2* nAChRs receptor occupancy and drug bioavailability. RESULTS: Acute antidepressant-like effects in the forced swim test were seen with sazetidine and the full ß2* agonist 5-I-A8350 (BALB/cJ mice) and the less selective ß2* partial agonist varenicline in C57BL/6J but not BALB/cJ mice. The role of ß2* nAChRs was confirmed by results showing: (1) reversal of sazetidine's antidepressant-like effects in the forced swim test by nAChR antagonists mecamylamine and dihydro-ß-erythroidine; (2) absence of sazetidine's effect in mice lacking the ß2 subunit of the nAChR; and (3) a high correspondence between behaviorally active doses of sazetidine and ß2* receptor occupancy. ß2* receptor occupancy following acute sazetidine, varenicline, and 5-I-A8350 lasted beyond the duration of action in the forced swim test. Sazetidine's long lasting receptor occupancy did not diminish behavioral efficacy in the forced swim test following repeated dosing. CONCLUSIONS: Results demonstrate that activation of a small population of ß2* nAChRs (10-40%) is sufficient to elicit sazetidine's antidepressant-like actions without producing tolerance and suggest that ligands that activate ß2* nAChRs would be promising targets for the development of a new class of antidepressant.


Asunto(s)
Antidepresivos/farmacología , Azetidinas/farmacología , Benzazepinas/farmacología , Agonistas Nicotínicos/farmacología , Piridinas/farmacología , Quinoxalinas/farmacología , Receptores Nicotínicos/metabolismo , Animales , Antidepresivos/sangre , Antidepresivos/farmacocinética , Azetidinas/sangre , Azetidinas/farmacocinética , Conducta Animal/efectos de los fármacos , Benzazepinas/sangre , Benzazepinas/farmacocinética , Encéfalo/metabolismo , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Ligandos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Estructura Molecular , Actividad Motora/efectos de los fármacos , Agonistas Nicotínicos/sangre , Agonistas Nicotínicos/farmacocinética , Unión Proteica , Piridinas/sangre , Piridinas/farmacocinética , Quinoxalinas/sangre , Quinoxalinas/farmacocinética , Natación , Factores de Tiempo , Vareniclina
13.
J Med Chem ; 54(20): 7280-8, 2011 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-21905669

RESUMEN

Depression, a common neurological condition, is one of the leading causes of disability and suicide worldwide. Standard treatment, targeting monoamine transporters selective for the neurotransmitters serotonin and noradrenaline, is not able to help many patients that are poor responders. This study advances the development of sazetidine-A analogues that interact with α4ß2 nicotinic acetylcholine receptors (nAChRs) as partial agonists and that possess favorable antidepressant profiles. The resulting compounds that are highly selective for the α4ß2 subtype of nAChR over α3ß4-nAChRs are partial agonists at the α4ß2 subtype and have excellent antidepressant behavioral profiles as measured by the mouse forced swim test. Preliminary absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies for one promising ligand revealed an excellent plasma protein binding (PPB) profile, low CYP450-related metabolism, and low cardiovascular toxicity, suggesting it is a promising lead as well as a drug candidate to be advanced through the drug discovery pipeline.


Asunto(s)
Antidepresivos/síntesis química , Azetidinas/síntesis química , Isoxazoles/síntesis química , Agonistas Nicotínicos/síntesis química , Piridinas/síntesis química , Receptores Nicotínicos/fisiología , Animales , Antidepresivos/farmacocinética , Antidepresivos/farmacología , Azetidinas/farmacocinética , Azetidinas/farmacología , Conducta Animal/efectos de los fármacos , Unión Competitiva , Proteínas Sanguíneas/metabolismo , Agonismo Parcial de Drogas , Humanos , Técnicas In Vitro , Isoxazoles/farmacocinética , Isoxazoles/farmacología , Ratones , Microsomas Hepáticos/metabolismo , Agonistas Nicotínicos/farmacocinética , Agonistas Nicotínicos/farmacología , Unión Proteica , Piridinas/farmacocinética , Piridinas/farmacología , Ratas , Receptores de Neurotransmisores/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA