Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 101(6): 796-802, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30232511

RESUMEN

Although octopuses are in high-demand globally and can bioaccumulate high concentrations of metals, the risk associated to its consumption is poorly understood. We compiled literature data from eight locations in Europe, North America and Northern Africa with different environmental levels of metals to evaluate: (1) the risk to human health through consumption of muscle tissues and digestive glands of Octopus hubbsorum, O. vulgaris and Eledone cirrhosa, and (2) the maximum allowable consumption rates (CRlim). The assessments were done according the United States Environmental Protection Agency. The results indicate the absence of health risk through consumption of muscle tissues, and high health risk through consumption of digestive glands (attributed to its high Cd levels), reflected in its 1ow CRlim values. In conclusion, even in contaminated sites the consumption of octopus muscle tissues is not an issue of concern, while the consumption of digestive glands should be more carefully monitored to avoid health problems.


Asunto(s)
Contaminación de Alimentos/análisis , Metales/análisis , Octopodiformes , Alimentos Marinos/análisis , África del Norte , Animales , Monitoreo del Ambiente/métodos , Europa (Continente) , Humanos , América del Norte , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
2.
PeerJ ; 6: e4295, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472993

RESUMEN

The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides. These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA