Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Cell Int ; 23(1): 64, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37038154

RESUMEN

Cancer is still the leading cause of death globally. The approval of the therapeutic use of monoclonal antibodies against immune checkpoint molecules, notably those that target the proteins PD-1 and PD-L1, has changed the landscape of cancer treatment. In particular, first-line PD-1/PD-L1 inhibitor drugs are increasingly common for the treatment of metastatic cancer, significantly prolonging patient survival. Despite the benefits brought by immune checkpoint inhibitors (ICIs)-based therapy, the majority of patients had their diseases worsen following a promising initial response. To increase the effectiveness of ICIs and advance our understanding of the mechanisms causing cancer resistance, it is crucial to find new, effective, and tolerable combination treatments. In this article, we addressed the potential of ICIs for the treatment of solid tumors and offer some insight into the molecular pathways behind therapeutic resistance to ICIs. We also discuss cutting-edge therapeutic methods for reactivating T-cell responsiveness after resistance has been established.

2.
Cancer Cell Int ; 22(1): 255, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35964048

RESUMEN

The primary purpose of ADCs is to increase the efficacy of anticancer medications by minimizing systemic drug distribution and targeting specific cells. Antibody conjugates (ADCs) have changed the way cancer is treated. However, because only a tiny fraction of patients experienced long-term advantages, current cancer preclinical and clinical research has been focused on combination trials. The complex interaction of ADCs with the tumor and its microenvironment appear to be reliant on the efficacy of a certain ADC, all of which have significant therapeutic consequences. Several clinical trials in various tumor types are now underway to examine the potential ADC therapy, based on encouraging preclinical results. This review tackles the potential use of ADCs in cancer therapy, emphasizing the essential processes underlying their positive therapeutic impacts on solid and hematological malignancies. Additionally, opportunities are explored to understand the mechanisms of ADCs action, the mechanism of resistance against ADCs, and how to overcome potential resistance following ADCs administration. Recent clinical findings have aroused interest, leading to a large increase in the number of ADCs in clinical trials. The rationale behind ADCs, as well as their primary features and recent research breakthroughs, will be discussed. We then offer an approach for maximizing the potential value that ADCs can bring to cancer patients by highlighting key ideas and distinct strategies.

3.
Cancer Cell Int ; 22(1): 9, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996478

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is a heterogeneous CNS neoplasm which causes significant morbidity and mortality. One reason for the poor prognostic outcome of GBM is attributed to the presence of cancer stem cells (CSC) which confer resistance against standard chemo- and radiotherapeutics modalities. Two types of GBM-associated CSC were isolated from the same patient: tumor core- (c-CSC) and peritumor tissue-derived cancer stem cells (p-CSC). Our experiments are focused on glioblastoma-IDH-wild type, and no disease-defining alterations were present in histone, BRAF or other genes. METHODS: In the present study, potential differences in genetic variants between c-CSC versus p-CSC derived from four GBM patients were investigated with the aims of (1) comparing the exome sequences between all the c-CSC or p-CSC to identify the common variants; (2) identifying the variants affecting the function of genes known to be involved in cancer origin and development. RESULTS: By comparative analyses, we identified common gene single nucleotide variants (SNV) in all GBM c-CSC and p-CSC, a potentially deleterious variant was a frameshift deletion at Gln461fs in the MLLT1 gene, that was encountered only in p-CSC samples with different allelic frequency. CONCLUSIONS: We discovered a potentially harmful frameshift deletion at Gln461fs in the MLLT1 gene. Further investigation is required to confirm the presence of the identified mutations in patient tissue samples, as well as the significance of the frameshift mutation in the MLLT1 gene on GBM biology and response to therapy based on genomic functional experiments.

4.
Metab Brain Dis ; 37(4): 973-988, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35075502

RESUMEN

Rosemary oil (ROO) is known to have multiple pharmacological effects: it is an antioxidant, anti-inflammatory, and cytoprotective. In the present study, we examined the effects of ROO on Human olfactory bulb neuronal stem cells (hOBNSCs) after their transplantation into rats, with the ibotenic (IBO) acid-induced cognitive deficit model. After 7 weeks, cognitive functions were assessed using the Morris water maze (MWM). After two months blood and hippocampus samples were collected for biochemical, gene expression, and histomorphometric analyses. Learning ability and memory function were significantly enhanced (P < 0.05) after hOBNSCs transplantation and were nearly returned to normal in the treated group. The IBO acid injection was associated with a significant decline (P < 0.05) of total leukocyte count (TLC) and a significant increase (P < 0.05) in total and toxic neutrophils. As well, the level of IL-1ß, TNF-α CRP in serum and levels of MDA and NO in hippocampus tissue were significantly elevated (P < 0.05), while antioxidant markers (CAT, GSH, and SOD) were reduced (P < 0.05) in treated tissue compared to controls. The administration of ROO before or with cell transplantation attenuated all these parameters. In particular, the level of NO nearly returned to normal when rosemary was administrated before cell transplantation. Gene expression analysis revealed the potential protective effect of ROO and hOBNSCs via down-expression of R-ßAmyl and R- CAS 3 and R-GFAP genes. The improvement in the histological organization of the hippocampus was detected after the hOBNSCs transplantation especially in h/ROO/hOBNSCs group.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Síndromes de Neurotoxicidad , Rosmarinus , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Antioxidantes/uso terapéutico , Suplementos Dietéticos , Humanos , Ácido Iboténico/metabolismo , Ácido Iboténico/farmacología , Ácido Iboténico/uso terapéutico , Aprendizaje por Laberinto , Células-Madre Neurales/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Aceites Volátiles , Bulbo Olfatorio , Ratas
5.
Cancer Cell Int ; 21(1): 703, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952583

RESUMEN

The p53 protein is a transcription factor known as the "guardian of the genome" because of its critical function in preserving genomic integrity. The TP53 gene is mutated in approximately half of all human malignancies, including those of the breast, colon, lung, liver, prostate, bladder, and skin. When DNA damage occurs, the TP53 gene on human chromosome 17 stops the cell cycle. If p53 protein is mutated, the cell cycle is unrestricted and the damaged DNA is replicated, resulting in uncontrolled cell proliferation and cancer tumours. Tumor-associated p53 mutations are usually associated with phenotypes distinct from those caused by the loss of the tumor-suppressing function exerted by wild-type p53protein. Many of these mutant p53 proteins have oncogenic characteristics, and therefore modulate the ability of cancer cells to proliferate, escape apoptosis, invade and metastasize. Because p53 deficiency is so common in human cancer, this protein is an excellent option for cancer treatment. In this review, we will discuss some of the molecular pathways by which mutant p53 proteins might perform their oncogenic activities, as well as prospective treatment methods based on restoring tumor suppressive p53 functions.

6.
Mol Biol Rep ; 48(9): 6513-6524, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34398427

RESUMEN

We give a summary of SARS-genetic CoV-2's structure and evolution, as well as current attempts to develop efficient vaccine and treatment methods for SARS-CoV-2 infection, in this article. Most therapeutic strategies are based on repurposing of existing therapeutic agents used against various virus infections and focused mainly on inhibition of the virus replication cycle, enhancement of innate immunity, and alleviation of CRS caused by COVID-19. Currently, more than 100 clinical trials on COVID-19 aim to provide robust evidence on the efficacy of the currently available anti-SARS-CoV-2 antiviral substances, such as the nucleotide analogue remdesivir, the antimalarial drug chloroquine, and drugs directed against docking of SARS-CoV-2 to the membrane-associated angiotensin-converting enzyme 2 (ACE2) such as transmembrane protease serine 2 (TMPRSS2). The current vaccination campaign is ongoing worldwide using different types of vaccines such as Pfizer-BioNTech and Moderna, Johnson & Johnson, Oxford-AstraZeneca, Novavax, and others with efficacy ranging from 72-95%. In March 2021 Germany limited the use of the Oxford-AstraZeneca COVID-19 vaccine to people 60 years of age and older due to concerns that it may be causing blood clots. Further study and more data are needed to confirm the safety of different available vaccines.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Estructuras Genéticas/genética , Pandemias/prevención & control , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antivirales/farmacología , COVID-19/virología , Humanos , Vacunación/métodos , Tratamiento Farmacológico de COVID-19
7.
Int J Cancer ; 146(9): 2531-2538, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31396956

RESUMEN

KRAS mutations hinder therapeutic efficacy of epidermal growth factor receptor (EGFR)-specific monoclonal antibodies cetuximab and panitumumab-based immunotherapy of EGFR+ cancers. Although cetuximab inhibits KRAS-mutated cancer cell growth in vitro by natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), KRAS-mutated colorectal carcinoma (CRC) cells escape NK cell immunosurveillance in vivo. To overcome this limitation, we used cetuximab and panitumumab to redirect Fcγ chimeric receptor (CR) T cells against KRAS-mutated HCT116 colorectal cancer (CRC) cells. We compared four polymorphic Fcγ-CR constructs including CD16158F -CR, CD16158V -CR, CD32131H -CR, and CD32131R -CR transduced into T cells by retroviral vectors. Percentages of transduced T cells expressing CD32131H -CR (83.5 ± 9.5) and CD32131R -CR (77.7 ± 13.2) were significantly higher than those expressing with CD16158F -CR (30.3 ± 10.2) and CD16158V -CR (51.7 ± 13.7) (p < 0.003). CD32131R -CR T cells specifically bound soluble cetuximab and panitumumab. However, only CD16158V -CR T cells released high levels of interferon gamma (IFNγ = 1,145.5 pg/ml ±16.5 pg/ml, p < 0.001) and tumor necrosis factor alpha (TNFα = 614 pg/ml ± 21 pg/ml, p < 0.001) upon incubation with cetuximab-opsonized HCT116 cells. Moreover, only CD16158V -CR T cells combined with cetuximab killed HCT116 cells and A549 KRAS-mutated cells in vitro. CD16158V -CR T cells also effectively controlled subcutaneous growth of HCT116 cells in CB17-SCID mice in vivo. Thus, CD16158V -CR T cells combined with cetuximab represent useful reagents to develop innovative EGFR+KRAS-mutated CRC immunotherapies.


Asunto(s)
Cetuximab/farmacología , Neoplasias Colorrectales/terapia , Resistencia a Antineoplásicos , Inmunoterapia Adoptiva/métodos , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de IgG/inmunología , Animales , Antineoplásicos Inmunológicos/farmacología , Apoptosis , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Humanos , Masculino , Ratones , Ratones SCID , Receptores de IgG/genética , Células Tumorales Cultivadas , Valina/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Int J Cancer ; 146(1): 236-247, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31479522

RESUMEN

Cetuximab and panitumumab bind the human epidermal growth factor receptor (EGFR). Although the chimeric cetuximab (IgG1) triggers antibody-dependent-cellular-cytotoxicity (ADCC) of EGFR positive target cells, panitumumab (a human IgG2) does not. The inability of panitumumab to trigger ADCC reflects the poor binding affinity of human IgG2 Fc for the FcγRIII (CD16) on natural killer (NK) cells. However, both human IgG1 and IgG2 bind the FcγRII (CD32A) to a similar extent. Our study compares the ability of T cells, engineered with a novel low-affinity CD32A131R -chimeric receptor (CR), and those engineered with the low-affinity CD16158F -CR T cells, in eliminating EGFR positive epithelial cancer cells (ECCs) in combination with cetuximab or panitumumab. After T-cell transduction, the percentage of CD32A131R -CR T cells was 74 ± 10%, whereas the percentage of CD16158F -CR T cells was 46 ± 15%. Only CD32A131R -CR T cells bound panitumumab. CD32A131R -CR T cells combined with the mAb 8.26 (anti-CD32) and CD16158F -CR T cells combined with the mAb 3g8 (anti-CD16) eliminated colorectal carcinoma (CRC), HCT116FcγR+ cells, in a reverse ADCC assay in vitro. Crosslinking of CD32A131R -CR on T cells by cetuximab or panitumumab and CD16158F -CR T cells by cetuximab induced elimination of triple negative breast cancer (TNBC) MDA-MB-468 cells, and the secretion of interferon gamma and tumor necrosis factor alpha. Neither cetuximab nor panitumumab induced Fcγ-CR T antitumor activity against Kirsten rat sarcoma (KRAS)-mutated HCT116, nonsmall-cell-lung-cancer, A549 and TNBC, MDA-MB-231 cells. The ADCC of Fcγ-CR T cells was associated with the overexpression of EGFR on ECCs. In conclusion, CD32A131R -CR T cells are efficiently redirected by cetuximab or panitumumab against breast cancer cells overexpressing EGFR.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Cetuximab/administración & dosificación , Neoplasias/tratamiento farmacológico , Panitumumab/administración & dosificación , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de IgG/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Neoplasias/metabolismo , Linfocitos T/metabolismo
9.
J Cell Mol Med ; 23(10): 7078-7087, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31429199

RESUMEN

Several clinical and experimental studies have demonstrated that regular use of aspirin (acetylsalicylic acid, ASA) correlates with a reduced risk of cancer and that the drug exerts direct anti-tumour effects. We have previously reported that ASA inhibits proliferation of human glioblastoma multiforme-derived cancer stem cells. In the present study, we analysed the effects of ASA on nervous system-derived cancer cells, using the SK-N-SH (N) human neuroblastoma cell line as an experimental model. ASA treatment of SK-N-SH (N) dramatically reduced cell proliferation and motility, and induced neuronal-like differentiation, indicated by the appearance of the neuronal differentiation marker tyrosine hydroxylase (TH) after 5 days. ASA did not affect cell viability, but caused a time-dependent accumulation of cells in the G0 /G1 phase of the cell cycle, with a concomitant decrease in the percentage of cells in the G2 phase. These effects appear to be mediated by a COX-independent mechanism involving an increase in p21Waf1 and underphosphorylated retinoblastoma (hypo-pRb1) protein levels. These findings may support a potential role of ASA as adjunctive therapeutic agent in the clinical management of neuroblastoma.


Asunto(s)
Aspirina/farmacología , Diferenciación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Neuroblastoma/patología , Retinoblastoma/metabolismo , Transducción de Señal , Regulación hacia Arriba/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Modelos Biológicos , Fosforilación/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/metabolismo , Transducción de Señal/efectos de los fármacos , Survivin/metabolismo
10.
J Cell Physiol ; 234(9): 15459-15471, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30701538

RESUMEN

Several clinical studies indicated that the daily use of aspirin or acetylsalicylic acid reduces the cancer risk via cyclooxygenases (Cox-1 and Cox-2) inhibition. In addition, aspirin-induced Cox-dependent and -independent antitumor effects have also been described. Here we report, for the first time, that aspirin treatment of human glioblastoma cancer (GBM) stem cells, a small population responsible for tumor progression and recurrence, is associated with reduced cell proliferation and motility. Aspirin did not interfere with cell viability but induced cell-cycle arrest. Exogenous prostaglandin E2 significantly increased cell proliferation but did not abrogate the aspirin-mediated growth inhibition, suggesting a Cox-independent mechanism. These effects appear to be mediated by the increase of p21 waf1 and p27 Kip1 , associated with a reduction of Cyclin D1 and Rb1 protein phosphorylation, and involve the downregulation of key molecules responsible for tumor development, that is, Notch1, Sox2, Stat3, and Survivin. Our results support a possible role of aspirin as adjunctive therapy in the clinical management of GBM patients.

11.
J Cell Physiol ; 233(2): 1321-1329, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28500734

RESUMEN

In the central nervous system (CNS), oligodendrocytes are the glial element in charge of myelin formation. Obtaining an overall presence of oligodendrocyte precursor cells/oligodendrocytes (OPCs/OLs) in culture from different sources of NSCs is an important research area, because OPCs/OLs may provide a promising therapeutic strategy for diseases affecting myelination of axons. The present study was designed to differentiate human olfactory bulb NSCs (OBNSCs) into OPCs/OLs and using expression profiling (RT-qPCR) gene, immunocytochemistry, and specific protein expression to highlight molecular mechanism(s) underlying differentiation of human OBNSCs into OPCs/OLs. The differentiation of OBNSCs was characterized by a simultaneous appearance of neurons and glial cells. The differentiation medium, containing cAMP, PDGFA, T3, and all-trans-retinoic acid (ATRA), promotes OBNSCs to generate mostly oligodendrocytes (OLs) displaying morphological changes, and appearance of long cytoplasmic processes. OBNSCs showed, after 5 days in OLs differentiation medium, a considerable decrease in the number of nestin positive cells, which was associated with a concomitant increase of NG2 immunoreactive cells and few O4(+)-OPCs. In addition, a significant up regulation in gene and protein expression profile of stage specific cell markers for OPCs/OLs (CNPase, Galc, NG2, MOG, OLIG1, OLIG2, MBP), neurons, and astrocytes (MAP2, ß-TubulinIII, GFAP) and concomitant decrease of OBNSCs pluripotency markers (Oct4, Sox2, Nestin), was demonstrated following induction of OBNSCs differentiation. Taken together, the present study demonstrate the marked ability of a cocktail of factors containing PDGFA, T3, cAMP, and ATRA, to induce OBNSCs differentiation into OPCs/OLs and shed light on the key genes and pathological pathways involved in this process.


Asunto(s)
AMP Cíclico/farmacología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Bulbo Olfatorio/citología , Oligodendroglía/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Tretinoina/farmacología , Triyodotironina/farmacología , Adulto , Biomarcadores/metabolismo , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Persona de Mediana Edad , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Fenotipo , Factores de Tiempo
12.
J Cell Physiol ; 233(2): 936-945, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28369825

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types such as cartilage, bone, and fat cells. Recent studies have shown that induction of MSCs in vitro by growth factors including epidermal growth factor (EGF) and fibroblast growth factor (FGF2) causes them to differentiate into neural like cells. These cultures also express ChAT, a cholinergic marker; and TH, a dopaminergic marker for neural cells. To establish a protocol with maximum differentiation potential, we examined MSCs under three experimental culture conditions using neural induction media containing FGF2, EGF, BMP-9, retinoic acid, and heparin. Adipose-derived MSCs were extracted and expanded in vitro for 3 passages after reaching >80% confluency, for a total duration of 9 days. Cells were then characterized by flow cytometry for CD markers as CD44 positive and CD45 negative. MSCs were then treated with neural induction media and were characterized by morphological changes and Q-PCR. Differentiated MSCs expressed markers for immature and mature neurons; ß Tubulin III (TUBB3) and MAP2, respectively, showing the neural potential of these cells to differentiate into functional neurons. Improved protocols for MSCs induction will facilitate and ensure the reproducibility and standard production of MSCs for therapeutic applications in neurodegenerative diseases.


Asunto(s)
Tejido Adiposo/citología , Neuronas Colinérgicas/fisiología , Neuronas Dopaminérgicas/fisiología , Células Madre Mesenquimatosas/fisiología , Células-Madre Neurales/fisiología , Neurogénesis , Adulto , Linaje de la Célula , Separación Celular , Células Cultivadas , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Medios de Cultivo/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Fenotipo , Tubulina (Proteína)/metabolismo
14.
J Cell Physiol ; 232(12): 3586-3597, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28121007

RESUMEN

Neural stem cells (NSCs) are multipotent self-renewing cells that could be used in cellular-based therapy for a wide variety of neurodegenerative diseases including Alzheimer's diseases (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Being multipotent in nature, they are practically capable of giving rise to major cell types of the nervous tissue including neurons, astrocytes, and oligodendrocytes. This is in marked contrast to neural progenitor cells which are committed to a specific lineage fate. In previous studies, we have demonstrated the ability of NSCs isolated from human olfactory bulb (OB) to survive, proliferate, differentiate, and restore cognitive and motor deficits associated with AD, and PD rat models, respectively. The use of carbon nanotubes (CNTs) to enhance the survivability and differentiation potential of NSCs following their in vivo engraftment have been recently suggested. Here, in order to assess the ability of CNTs to enhance the therapeutic potential of human OBNSCs for restoring cognitive deficits and neurodegenerative lesions, we co-engrafted CNTs and human OBNSCs in TMT-neurodegeneration rat model. The present study revealed that engrafted human OBNSCS-CNTs restored cognitive deficits, and neurodegenerative changes associated with TMT-induced rat neurodegeneration model. Moreover, the CNTs seemed to provide a support for engrafted OBNSCs, with increasing their tendency to differentiate into neurons rather than into glia cells. The present study indicate the marked ability of CNTs to enhance the therapeutic potential of human OBNSCs which qualify this novel therapeutic paradigm as a promising candidate for cell-based therapy of different neurodegenerative diseases.


Asunto(s)
Nanomedicina/métodos , Nanotubos de Carbono , Degeneración Nerviosa , Células-Madre Neurales/trasplante , Enfermedades Neurodegenerativas/cirugía , Neurogénesis , Neuronas/patología , Bulbo Olfatorio/citología , Andamios del Tejido , Compuestos de Trialquiltina , Animales , Conducta Animal , Células Cultivadas , Cognición , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Humanos , Masculino , Aprendizaje por Laberinto , Microscopía Fluorescente , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Fenotipo , Ratas Wistar , Tiempo de Reacción , Factores de Tiempo , Transfección
15.
EMBO Rep ; 16(8): 1037-50, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26136374

RESUMEN

Although the two catalytic subunits of the SWI/SNF chromatin-remodeling complex--Brahma (Brm) and Brg1--are almost invariably co-expressed, their mutually exclusive incorporation into distinct SWI/SNF complexes predicts that Brg1- and Brm-based SWI/SNF complexes execute specific functions. Here, we show that Brg1 and Brm have distinct functions at discrete stages of muscle differentiation. While Brg1 is required for the activation of muscle gene transcription at early stages of differentiation, Brm is required for Ccnd1 repression and cell cycle arrest prior to the activation of muscle genes. Ccnd1 knockdown rescues the ability to exit the cell cycle in Brm-deficient myoblasts, but does not recover terminal differentiation, revealing a previously unrecognized role of Brm in the activation of late muscle gene expression independent from the control of cell cycle. Consistently, Brm null mice displayed impaired muscle regeneration after injury, with aberrant proliferation of satellite cells and delayed formation of new myofibers. These data reveal stage-specific roles of Brm during skeletal myogenesis, via formation of repressive and activatory SWI/SNF complexes.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , ADN Helicasas/metabolismo , Expresión Génica , Desarrollo de Músculos/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Ciclina D1/deficiencia , Ciclina D1/genética , ADN Helicasas/genética , Técnicas de Silenciamiento del Gen , Ratones , Células Musculares , Proteínas Nucleares/genética , Factores de Transcripción/genética
16.
J Cell Physiol ; 231(10): 2081-7, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26791139

RESUMEN

Currently, there is much interest in the characterization of metabolic profiling of cancer stem cells (CSCs), a small subset of tumor cells with self-renewal capacity. Indeed, ever-growing evidence indicate that metabolism and stemness are highly intertwined processes in tumor tissue. In this review, we analyze the potential metabolic targeting strategies for eradicating CSCs that could help to develop a more effective therapeutic approach for gastrointestinal cancers. Indeed, the successful elimination of a tumor requires an anticancer therapy that affects both cancer cells and CSCs. The observation that gastrointestinal CSCs possess higher inducible nitric oxide sinthase (iNOS) expression, lower reactive oxygen species (ROS) production, and a different metabolism respect to no-CSCs tumor cells has paved the way to develop drugs targeting CSC specific signaling. In particular, several studies have highlighted that metformin, aldehyde dehydrogenase 1, and iNOS inhibitors selectively suppressed CSC growth and that combinatorial therapy of them with standard chemotherapeutic drugs had a synergistic effect resulting in reduced tumor burden and delayed tumor recurrence. Thus, the possibility of combining specific CSC metabolism inhibitors with existing therapeutic approaches could have profound anticancer effects, changing the conventional treatment approaches to gastrointestinal cancers. J. Cell. Physiol. 231: 2081-2087, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Gastrointestinales/metabolismo , Células Madre Neoplásicas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Neoplasias Gastrointestinales/tratamiento farmacológico , Humanos , Células Madre Neoplásicas/efectos de los fármacos
17.
J Cell Physiol ; 231(7): 1432-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26496533

RESUMEN

Alzheimer's disease (AD) is one of the most devastating disorders. Despite the continuing increase of its incidence among aging populations, no effective cure has been developed mainly due to difficulties in early diagnosis of the disease before damaging of the brain, and the failure to explore its complex underlying molecular mechanisms. Recent technological advances in genome-wide association studies (GWAS) and high throughput next generation whole genome, and exome sequencing had deciphered many of AD-related loci, and discovered single nucleotide polymorphisms (SNPs) that are associated with altered AD molecular pathways. Highlighting altered molecular pathways linked to AD pathogenesis is crucial to identify novel diagnostic and therapeutic AD targets.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Humanos , Polimorfismo de Nucleótido Simple , Transducción de Señal
18.
J Cell Physiol ; 231(8): 1688-94, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26660761

RESUMEN

Human microbiota are distinct communities of microorganisms that resides at different body niches. Exploration of the human microbiome has become a reality due to the availability of powerful metagenomics and metatranscriptomic analysis technologies. Recent advances in sequencing and bioinformatics over the past decade help provide a deep insight into the nature of the host-microbial interactions and identification of potential deriver genes and pathways associated with human health, well-being, and predisposition to different diseases. In the present review, we outline recent studies devoted to elucidate the possible link between the microbiota and various type of diseases. The present review also highlights the potential utilization of microbiota as a potential therapeutic option to treat a wide array of human diseases. J. Cell. Physiol. 231: 1688-1694, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Bacterias , Disbiosis , Hongos , Estado de Salud , Microbiota , Virus , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/patogenicidad , Enfermedades del Sistema Digestivo/microbiología , Enfermedades del Sistema Digestivo/virología , Susceptibilidad a Enfermedades , Disbiosis/microbiología , Disbiosis/virología , Hongos/clasificación , Hongos/genética , Hongos/crecimiento & desarrollo , Hongos/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/virología , Enfermedades Neurodegenerativas/microbiología , Enfermedades Neurodegenerativas/virología , Factores de Riesgo , Virus/clasificación , Virus/genética , Virus/crecimiento & desarrollo , Virus/patogenicidad
19.
J Pathol ; 236(4): 479-90, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25875314

RESUMEN

Chronic inflammation is a leading cause of neoplastic transformation in many human cancers and especially in colon cancer (CC), in part due to tumour promotion by nitric oxide (NO) generated at inflammatory sites. It has also been suggested that high NO synthesis, secondary to inducible NO synthase (iNOS) expression, is a distinctive feature of cancer stem cells (CSCs), a small subset of tumour cells with self-renewal capacity. In this study we explored the contribution of NO to the development of colon CSC features and evaluated potential strategies to treat CC by modulating NO production. Our data show an integral role for endogenous NO and iNOS activity in the biology of colon CSCs. Indeed, colon CSCs with high endogenous NO production (NO(high)) displayed higher tumourigenic abilities than NO(low) fractions. The blockade of endogenous NO availability, using either a specific iNOS inhibitor or a genetic knock-down of iNOS, resulted in a significant reduction of colon CSC tumourigenic capacities in vitro and in vivo. Interestingly, analysis of genes altered by iNOS-directed shRNA showed that the knockdown of iNOS expression was associated with a significant down-regulation of signalling pathways involved in stemness and tumour progression in colon CSCs. These findings confirm that endogenous NO plays an important role in defining the stemness properties of colon CSCs through cross-regulation of several cellular signalling pathways. This discovery could shed light on the mechanisms by which NO induces the growth and invasiveness of CC, providing new insights into the link between inflammation and colon tumourigenesis.


Asunto(s)
Neoplasias Colorrectales/enzimología , Células Madre Neoplásicas/enzimología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Antígeno AC133 , Animales , Antígenos CD/metabolismo , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Células CACO-2 , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/metabolismo , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Ratones Desnudos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Péptidos/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Carga Tumoral , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Cell Physiol ; 230(7): 1614-29, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25536543

RESUMEN

Parkinson's disease (PD) is a neurological disorder characterized by the loss of midbrain dopaminergic (DA) neurons. Neural stem cells (NSCs) are multipotent stem cells that are capable of differentiating into different neuronal and glial elements. The production of DA neurons from NSCs could potentially alleviate behavioral deficits in Parkinsonian patients; timely intervention with NSCs might provide a therapeutic strategy for PD. We have isolated and generated highly enriched cultures of neural stem/progenitor cells from the human olfactory bulb (OB). If NSCs can be obtained from OB, it would alleviate ethical concerns associated with the use of embryonic tissue, and provide an easily accessible cell source that would preclude the need for invasive brain surgery. Following isolation and culture, olfactory bulb neural stem cells (OBNSCs) were genetically engineered to express hNGF and GFP. The hNFG-GFP-OBNSCs were transplanted into the striatum of 6-hydroxydopamin (6-OHDA) Parkinsonian rats. The grafted cells survived in the lesion environment for more than eight weeks after implantation with no tumor formation. The grafted cells differentiated in vivo into oligodendrocyte-like (25 ± 2.88%), neuron-like (52.63 ± 4.16%), and astrocyte -like (22.36 ± 1.56%) lineages, which we differentiated based on morphological and immunohistochemical criteria. Transplanted rats exhibited a significant partial correction in stepping and placing in non-pharmacological behavioral tests, pole and rotarod tests. Taken together, our data encourage further investigations of the possible use of OBNSCs as a promising cell-based therapeutic strategy for Parkinson's disease.


Asunto(s)
Células-Madre Neurales/trasplante , Bulbo Olfatorio/citología , Enfermedad de Parkinson/terapia , Trasplante de Células Madre/métodos , Animales , Regulación de la Expresión Génica/fisiología , Humanos , Masculino , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA