Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 76(5): 1345-1359, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35253915

RESUMEN

BACKGROUND AND AIMS: Netrin-1 displays protumoral properties, though the pathological contexts and processes involved in its induction remain understudied. The liver is a major model of inflammation-associated cancer development, leading to HCC. APPROACH AND RESULTS: A panel of cell biology and biochemistry approaches (reverse transcription quantitative polymerase chain reaction, reporter assays, run-on, polysome fractionation, cross linking immunoprecipitation, filter binding assay, subcellular fractionation, western blotting, immunoprecipitation, stable isotope labeling by amino acids in cell culture) on in vitro-grown primary hepatocytes, human liver cell lines, mouse samples and clinical samples was used. We identify netrin-1 as a hepatic inflammation-inducible factor and decipher its mode of activation through an exhaustive eliminative approach. We show that netrin-1 up-regulation relies on a hitherto unknown mode of induction, namely its exclusive translational activation. This process includes the transfer of NTN1 (netrin-1) mRNA to the endoplasmic reticulum and the direct interaction between the Staufen-1 protein and this transcript as well as netrin-1 mobilization from its cell-bound form. Finally, we explore the impact of a phase 2 clinical trial-tested humanized anti-netrin-1 antibody (NP137) in two distinct, toll-like receptor (TLR) 2/TLR3/TLR6-dependent, hepatic inflammatory mouse settings. We observe a clear anti-inflammatory activity indicating the proinflammatory impact of netrin-1 on several chemokines and Ly6C+ macrophages. CONCLUSIONS: These results identify netrin-1 as an inflammation-inducible factor in the liver through an atypical mechanism as well as its contribution to hepatic inflammation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Humanos , Animales , Receptor Toll-Like 2 , Factores de Crecimiento Nervioso/metabolismo , Receptor Toll-Like 3 , Receptor Toll-Like 6 , Proteínas Supresoras de Tumor/metabolismo , Inflamación/metabolismo , Antiinflamatorios , ARN Mensajero , Aminoácidos , Receptores de Netrina
2.
J Immunol ; 204(8): 2133-2142, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32188759

RESUMEN

It is becoming increasingly evident that reactive oxygen species (ROS) have critical roles as "second messengers" in cell signaling. In B cells, ROS can be generated either as a byproduct of mitochondrial respiration, as a result of the endoplasmic reticulum stress response induced by high production of Igs, or by the activation of NADPH oxidase (NOX) complexes. Having previously shown that costimulation of B cells via TLR 9 and the TLR-related receptor RP105 drives maturation of human peripheral blood B cells into Ig-producing cells, we aimed to study the role of ROS generated during this vital process. To this end, the ROS levels were either reduced by the NOX inhibitor VAS2870 or by the ROS scavenger N-acetyl cysteine (NAC). We revealed that TLR9/RP105-mediated stimulation of human B cells involved a rapid activation of NOX. Moreover, VAS2870 blocked the TLR9/RP105-induced B cell activation and thereby all Ig production. Importantly, we showed that ROS targeted by NAC was selectively required for IgG but not for IgM production. The endoplasmic reticulum stress response in the TLR9/RP105-stimulated cells was higher in IgG+ than in IgG- cells and was reduced by NAC in IgG+ cells only. Of note, we revealed that substantially higher levels of IgG than IgM were produced per cell and that IgG+ cells produced significantly higher ROS levels than IgG- cells. Taken together, our results imply that NAC-targeted ROS may be particularly important for sustaining the high Ig production in IgG+ B cells.


Asunto(s)
Linfocitos B/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptores Toll-Like/inmunología , Acetilcisteína/farmacología , Benzoxazoles/farmacología , Humanos , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Triazoles/farmacología
3.
Virus Res ; 271: 197679, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31398365

RESUMEN

Hepatitis C virus (HCV) virions contain a subset of host liver cells proteome often composed of interesting virus-interacting factors. A proteomic analysis performed on double gradient-purified clinical HCV highlighted the translation regulator LARP1 on these virions. This finding was validated using post-virion capture and immunoelectron microscopy, as well as immunoprecipitation applied to in vitro (Huh7.5 liver cells) grown (Gt2a, JFH1 strain) and patient-derived (Gt1a) HCV particles. Upon HCV infection of Huh7.5 cells, we observed a drastic transfer of LARP1 to lipid droplets, inducing colocalization with core proteins. RNAi-mediated depletion of LARP1 using the C911 control approach decreased extracellular infectivity of HCV Gt1a (H77), Gt2a (JFH1), and Gt3a (S52 chimeric strain), yet increased their intracellular infectivity. This latter effect was unrelated to changes in the hepatocyte secretory pathway, as evidenced using a functional RUSH assay. These results indicate that LARP1 binds to HCV, an event associated with retention of intracellular infectivity.


Asunto(s)
Autoantígenos/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , Interacciones Huésped-Patógeno , Ribonucleoproteínas/metabolismo , Autoantígenos/genética , Hepatitis C/genética , Humanos , Unión Proteica , Interferencia de ARN , Ribonucleoproteínas/genética , Virión/aislamiento & purificación , Virión/metabolismo , Antígeno SS-B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA