RESUMEN
Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp(AP-BL)) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp(AP-BL) values than triglycosides. Sugar substituents affected the Papp(AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo.
Asunto(s)
Glicósidos/farmacocinética , Mucosa Intestinal/metabolismo , Opuntia/química , Extractos Vegetales/farmacocinética , Quercetina/análogos & derivados , Animales , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión , Glicósidos/química , Humanos , Estructura Molecular , Permeabilidad , Extractos Vegetales/química , Quercetina/química , Quercetina/farmacocinética , Ratas , Reproducibilidad de los ResultadosRESUMEN
Significant efforts have focused on identifying targetable genetic drivers that support the growth of solid tumors and/or increase metastatic ability. During tumor development and progression to metastatic disease, physiological and pharmacological selective pressures influence parallel adaptive strategies within cancer cell sub-populations. Such adaptations allow cancer cells to withstand these stressful microenvironments. This Darwinian model of stress adaptation often prevents durable clinical responses and influences the emergence of aggressive cancers with increased metastatic fitness. However, the mechanisms contributing to such adaptive stress responses are poorly understood. We now demonstrate that the p66ShcA redox protein, itself a ROS inducer, is essential for survival in response to physiological stressors, including anchorage independence and nutrient deprivation, in the context of poor outcome breast cancers. Mechanistically, we show that p66ShcA promotes both glucose and glutamine metabolic reprogramming in breast cancer cells, to increase their capacity to engage catabolic metabolism and support glutathione synthesis. In doing so, chronic p66ShcA exposure contributes to adaptive stress responses, providing breast cancer cells with sufficient ATP and redox balance needed to withstand such transient stressed states. Our studies demonstrate that p66ShcA functionally contributes to the maintenance of aggressive phenotypes and the emergence of metastatic disease by forcing breast tumors to adapt to chronic and moderately elevated levels of oxidative stress.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Proteínas Adaptadoras de la Señalización Shc/genética , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Neoplasias de la Mama/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Estrés Oxidativo/fisiología , Fenotipo , Línea Celular Tumoral , Microambiente TumoralRESUMEN
Bioenergetic perturbations driving neoplastic growth increase the production of reactive oxygen species (ROS), requiring a compensatory increase in ROS scavengers to limit oxidative stress. Intervention strategies that simultaneously induce energetic and oxidative stress therefore have therapeutic potential. Phenformin is a mitochondrial complex I inhibitor that induces bioenergetic stress. We now demonstrate that inflammatory mediators, including IFNγ and polyIC, potentiate the cytotoxicity of phenformin by inducing a parallel increase in oxidative stress through STAT1-dependent mechanisms. Indeed, STAT1 signaling downregulates NQO1, a key ROS scavenger, in many breast cancer models. Moreover, genetic ablation or pharmacological inhibition of NQO1 using ß-lapachone (an NQO1 bioactivatable drug) increases oxidative stress to selectively sensitize breast cancer models, including patient derived xenografts of HER2+ and triple negative disease, to the tumoricidal effects of phenformin. We provide evidence that therapies targeting ROS scavengers increase the anti-neoplastic efficacy of mitochondrial complex I inhibitors in breast cancer.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Fenformina/farmacología , Factor de Transcripción STAT1/metabolismo , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Sinergismo Farmacológico , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Metabolismo Energético/efectos de los fármacos , Femenino , Glutatión/antagonistas & inhibidores , Glutatión/biosíntesis , Humanos , Interferón gamma/administración & dosificación , Interferón gamma/deficiencia , Interferón gamma/metabolismo , Células MCF-7 , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones SCID , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Fenformina/administración & dosificación , Poli I-C/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT1/agonistas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The commonality between most phospho-tyrosine signaling networks is their shared use of adaptor proteins to transduce mitogenic signals. ShcA (SHC1) is one such adaptor protein that employs two phospho-tyrosine binding domains (PTB and SH2) and key phospho-tyrosine residues to promote mammary tumorigenesis. Receptor tyrosine kinases (RTK), such as ErbB2, bind the ShcA PTB domain to promote breast tumorigenesis by engaging Grb2 downstream of the ShcA tyrosine phosphorylation sites to activate AKT/mTOR signaling. However, breast tumors also rely on the ShcA PTB domain to bind numerous negative regulators that limit activation of secondary mitogenic signaling networks. This study examines the role of PTB-independent ShcA pools in controlling breast tumor growth and resistance to tyrosine kinase inhibitors. We demonstrate that PTB-independent ShcA complexes predominately rely on the ShcA SH2 domain to activate multiple Src family kinases (SFK), including Src and Fyn, in ErbB2-positive breast cancers. Using genetic and pharmacologic approaches, we show that PTB-independent ShcA complexes augment mammary tumorigenesis by increasing the activity of the Src and Fyn tyrosine kinases in an SH2-dependent manner. This bifurcation of signaling complexes from distinct ShcA pools transduces non-redundant signals that integrate the AKT/mTOR and SFK pathways to cooperatively increase breast tumor growth and resistance to tyrosine kinase inhibitors, including lapatinib and PP2. This study mechanistically dissects how the interplay between diverse intracellular ShcA complexes impacts the tyrosine kinome to affect breast tumorigenesis.Implications: The ShcA adaptor, within distinct signaling complexes, impacts tyrosine kinase signaling, breast tumor growth, and resistance to tyrosine kinase inhibitors. Mol Cancer Res; 16(5); 894-908. ©2018 AACR.