Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 8(8)2019 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426476

RESUMEN

Interferon (IFN) ß and Tumor Necrosis Factor (TNF) are key players in immunity against viruses. Compelling evidence has shown that the antiviral and inflammatory transcriptional response induced by IFNß is reprogrammed by crosstalk with TNF. IFNß mainly induces interferon-stimulated genes by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway involving the canonical ISGF3 transcriptional complex, composed of STAT1, STAT2, and IRF9. The signaling pathways engaged downstream of the combination of IFNß and TNF remain elusive, but previous observations suggested the existence of a response independent of STAT1. Here, using genome-wide transcriptional analysis by RNASeq, we observed a broad antiviral and immunoregulatory response initiated in the absence of STAT1 upon IFNß and TNF costimulation. Additional stratification of this transcriptional response revealed that STAT2 and IRF9 mediate the expression of a wide spectrum of genes. While a subset of genes was regulated by the concerted action of STAT2 and IRF9, other gene sets were independently regulated by STAT2 or IRF9. Collectively, our data supports a model in which STAT2 and IRF9 act through non-canonical parallel pathways to regulate distinct pool of antiviral and immunoregulatory genes in conditions with elevated levels of both IFNß and TNF.


Asunto(s)
Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Interferón beta/fisiología , Factor de Transcripción STAT2/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Estomatitis Vesicular/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología , Células A549 , Humanos
2.
Viruses ; 8(5)2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27187445

RESUMEN

Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis.


Asunto(s)
Interacciones Huésped-Patógeno , Virus Sincitial Respiratorio Humano/fisiología , Estrés Fisiológico , Replicación Viral , Animales , Antioxidantes/metabolismo , Gránulos Citoplasmáticos/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA