Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35162964

RESUMEN

The branched aerobic respiratory chain in Bacillus cereus comprises three terminal oxidases: cytochromes aa3, caa3, and bd. Cytochrome caa3 requires heme A for activity, which is produced from heme O by heme A synthase (CtaA). In this study, we deleted the ctaA gene in B. cereus AH187 strain, this deletion resulted in loss of cytochrome caa3 activity. Proteomics data indicated that B. cereus grown in glucose-containing medium compensates for the loss of cytochrome caa3 activity by remodeling its respiratory metabolism. This remodeling involves up-regulation of cytochrome aa3 and several proteins involved in redox stress response-to circumvent sub-optimal respiratory metabolism. CtaA deletion changed the surface-composition of B. cereus, affecting its motility, autoaggregation phenotype, and the kinetics of biofilm formation. Strikingly, proteome remodeling made the ctaA mutant more resistant to cold and exogenous oxidative stresses compared to its parent strain. Consequently, we hypothesized that ctaA inactivation could improve B. cereus fitness in a nutrient-limited environment.


Asunto(s)
Bacillus cereus/crecimiento & desarrollo , Proteínas Bacterianas/genética , Grupo Citocromo b/genética , Grupo Citocromo c/metabolismo , Citocromos a3/metabolismo , Citocromos a/metabolismo , Eliminación de Gen , Proteínas de la Membrana/genética , Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Complejo IV de Transporte de Electrones/metabolismo , Hemo/análogos & derivados , Hemo/metabolismo , Estrés Oxidativo , Fenotipo , Proteómica , Transducción de Señal
2.
J Bacteriol ; 202(15)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457049

RESUMEN

Bacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is required for the retention of surface layer (S-layer) and S-layer homology (SLH) domain proteins. Genetic disruption of the SCWP biosynthetic pathway impairs growth and cell division. B. anthracis SCWP is comprised of trisaccharide repeats composed of one ManNAc and two GlcNAc residues with O-3-α-Gal and O-4-ß-Gal substitutions. UDP-Gal, synthesized by GalE1, is the substrate of galactosyltransferases that modify the SCWP repeat. Here, we show that the gtsE gene, which encodes a predicted glycosyltransferase with a GT-A fold, is required for O-4-ß-Gal modification of trisaccharide repeats. We identify a DXD motif critical for GtsE activity. Three distinct genes, gtsA, gtsB, and gtsC, are required for O-3-α-Gal modification of trisaccharide repeats. Based on the similarity with other three-component glycosyltransferase systems, we propose that GtsA transfers Gal from cytosolic UDP-Gal to undecaprenyl phosphate (C55-P), GtsB flips the C55-P-Gal intermediate to the trans side of the membrane, and GtsC transfers Gal onto trisaccharide repeats. The deletion of galE1 does not affect growth in vitro, suggesting that galactosyl modifications are dispensable for the function of SCWP. The deletion of gtsA, gtsB, or gtsC leads to a loss of viability, yet gtsA and gtsC can be deleted in strains lacking galE1 or gtsE We propose that the loss of viability is caused by the accumulation of undecaprenol-bound precursors and present an updated model for SCWP assembly in B. anthracis to account for the galactosylation of repeat units.IMPORTANCE Peptidoglycan is a conserved extracellular macromolecule that protects bacterial cells from turgor pressure. Peptidoglycan of Gram-positive bacteria serves as a scaffold for the attachment of polymers that provide defined bacterial interactions with their environment. One such polymer, B. anthracis SCWP, is pyruvylated at its distal end to serve as a receptor for secreted proteins bearing the S-layer homology domain. Repeat units of SCWP carry three galactoses in B. anthracis Glycosylation is a recurring theme in nature and often represents a means to mask or alter conserved molecular signatures from intruders such as bacteriophages. Several glycosyltransferase families have been described based on bioinformatics prediction, but few have been studied. Here, we describe the glycosyltransferases that mediate the galactosylation of B. anthracis SCWP.


Asunto(s)
Bacillus anthracis/metabolismo , Pared Celular/metabolismo , Galactosa/metabolismo , Polisacáridos Bacterianos/metabolismo , Carbunco/microbiología , Bacillus anthracis/genética , Bacillus anthracis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/química , Pared Celular/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Glicosilación , Humanos , Polisacáridos Bacterianos/química
3.
Environ Microbiol ; 22(12): 5248-5264, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32815215

RESUMEN

Bacillus cereus is a ubiquitous endospore-forming bacterium, which mainly affects humans as a food-borne pathogen. Bacillus cereus can contaminate groundwater used to irrigate food crops. Here, we examined the ability of the emetic strain B. cereus F4810/72 to survive abiotic conditions encountered in groundwater. Our results showed that vegetative B. cereus cells rapidly evolved in a mixed population composed of endospores and asporogenic variants bearing spo0A mutations. One asporogenic variant, VAR-F48, was isolated and characterized. VAR-F48 can survive in sterilized groundwater over a long period in a vegetative form and has a competitive advantage compared to its parental strain. Proteomics analysis allowed us to quantify changes to cellular and exoproteins after 24 and 72 h incubation in groundwater, for VAR-F48 compared to its parental strain. The results revealed a significant re-routing of the metabolism in the absence of Spo0A. We concluded that VAR-F48 maximizes its energy use to deal with oligotrophy, and the emergence of spo0A-mutated variants may contribute to the persistence of emetic B. cereus in natural oligotrophic environments.


Asunto(s)
Bacillus cereus/fisiología , Proteínas Bacterianas/genética , Enfermedades Transmitidas por los Alimentos/microbiología , Agua Subterránea/microbiología , Factores de Transcripción/genética , Bacillus cereus/genética , Bacillus cereus/aislamiento & purificación , Bacillus cereus/metabolismo , Proteínas Bacterianas/metabolismo , Microbiología de Alimentos , Humanos , Viabilidad Microbiana/genética , Mutación , Esporas Bacterianas/genética , Esporas Bacterianas/aislamiento & purificación , Esporas Bacterianas/metabolismo , Esporas Bacterianas/fisiología , Factores de Transcripción/metabolismo
4.
J Bacteriol ; 200(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29229702

RESUMEN

Bacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is essential for bacterial growth and cell division. B. anthracis SCWP is comprised of trisaccharide repeats with the structure, [→4)-ß-ManNAc-(1→4)-ß-GlcNAc(O3-α-Gal)-(1→6)-α-GlcNAc(O3-α-Gal, O4-ß-Gal)-(1→]6-12 The genes whose products promote the galactosylation of B. anthracis SCWP are not yet known. We show here that the expression of galE1, encoding a UDP-glucose 4-epimerase necessary for the synthesis of UDP-galactose, is required for B. anthracis SCWP galactosylation. The galE1 mutant assembles surface (S) layer and S layer-associated proteins that associate with ketal-pyruvylated SCWP via their S layer homology domains similarly to wild-type B. anthracis, but the mutant displays a defect in γ-phage murein hydrolase binding to SCWP. Furthermore, deletion of galE1 diminishes the capsulation of B. anthracis with poly-d-γ-glutamic acid (PDGA) and causes a reduction in bacterial virulence. These data suggest that SCWP galactosylation is required for the physiologic assembly of the B. anthracis cell wall envelope and for the pathogenesis of anthrax disease.IMPORTANCE Unlike virulent Bacillus anthracis isolates, B. anthracis strain CDC684 synthesizes secondary cell wall polysaccharide (SCWP) trisaccharide repeats without galactosyl modification, exhibits diminished growth in vitro in broth cultures, and is severely attenuated in an animal model of anthrax. To examine whether SCWP galactosylation is a requirement for anthrax disease, we generated variants of B. anthracis strains Sterne 34F2 and Ames lacking UDP-glucose 4-epimerase by mutating the genes galE1 and galE2 We identified galE1 as necessary for SCWP galactosylation. Deletion of galE1 decreased the poly-d-γ-glutamic acid (PDGA) capsulation of the vegetative form of B. anthracis and increased the bacterial inoculum required to produce lethal disease in mice, indicating that SCWP galactosylation is indeed a determinant of anthrax disease.


Asunto(s)
Carbunco/microbiología , Bacillus anthracis/metabolismo , Bacillus anthracis/patogenicidad , Proteínas Bacterianas/genética , Galactosa/metabolismo , Polisacáridos Bacterianos/metabolismo , Animales , Bacillus anthracis/genética , Bacillus anthracis/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , División Celular , Pared Celular/química , Pared Celular/genética , Pared Celular/fisiología , Femenino , Galactosa/genética , Galactosidasas/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Trisacáridos/química , Trisacáridos/metabolismo , UDPglucosa 4-Epimerasa/genética , Uridina Difosfato Galactosa/biosíntesis , Uridina Difosfato Galactosa/metabolismo
5.
J Bacteriol ; 199(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795328

RESUMEN

The secondary cell wall polysaccharide (SCWP) is thought to be essential for vegetative growth and surface (S)-layer assembly in Bacillus anthracis; however, the genetic determinants for the assembly of its trisaccharide repeat structure are not known. Here, we report that WpaA (BAS0847) and WpaB (BAS5274) share features with membrane proteins involved in the assembly of O-antigen lipopolysaccharide in Gram-negative bacteria and propose that WpaA and WpaB contribute to the assembly of the SCWP in B. anthracis Vegetative forms of the B. anthracis wpaA mutant displayed increased lengths of cell chains, a cell separation defect that was attributed to mislocalization of the S-layer-associated murein hydrolases BslO, BslS, and BslT. The wpaB mutant was defective in vegetative replication during early logarithmic growth and formed smaller colonies. Deletion of both genes, wpaA and wpaB, did not yield viable bacilli, and when depleted of both wpaA and wpaB, B. anthracis could not maintain cell shape, support vegetative growth, or assemble SCWP. We propose that WpaA and WpaB fulfill overlapping glycosyltransferase functions of either polymerizing repeat units or transferring SCWP polymers to linkage units prior to LCP-mediated anchoring of the polysaccharide to peptidoglycan. IMPORTANCE: The secondary cell wall polysaccharide (SCWP) is essential for Bacillus anthracis growth, cell shape, and division. SCWP is comprised of trisaccharide repeats (→4)-ß-ManNAc-(1→4)-ß-GlcNAc-(1→6)-α-GlcNAc-(1→) with α-Gal and ß-Gal substitutions; however, the genetic determinants and enzymes for SCWP synthesis are not known. Here, we identify WpaA and WpaB and report that depletion of these factors affects vegetative growth, cell shape, and S-layer assembly. We hypothesize that WpaA and WpaB are involved in the assembly of SCWP prior to transfer of this polymer onto peptidoglycan.


Asunto(s)
Bacillus anthracis/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/química , Regulación Bacteriana de la Expresión Génica/fisiología , Polisacáridos Bacterianos/metabolismo , Secuencia de Aminoácidos , Bacillus anthracis/citología , Bacillus anthracis/genética , Proteínas Bacterianas/genética , Eliminación de Gen , Polisacáridos Bacterianos/genética
6.
Cell Microbiol ; 18(4): 546-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26426083

RESUMEN

The human-adapted organism Neisseria gonorrhoeae is the causative agent of gonorrhoea, a sexually transmitted infection. It readily colonizes the genital, rectal and nasalpharyngeal mucosa during infection. While it is well established that N. gonorrhoeae recruits and modulates the functions of polymorphonuclear leukocytes during infection, how N. gonorrhoeae interacts with macrophages present in infected tissue is not fully defined. We studied the interactions of N. gonorrhoeae with two human monocytic cell lines, THP-1 and U937, and primary monocytes, all differentiated into macrophages. Most engulfed bacteria were killed in the phagolysosome, but a subset of bacteria was able to survive and replicate inside the macrophages suggesting that those cells may be an unexplored cellular reservoir for N. gonorrhoeae during infection. N. gonorrhoeae was able to modulate macrophage apoptosis: N. gonorrhoeae induced apoptosis in THP-1 cells whereas it inhibited induced apoptosis in U937 cells and primary human macrophages. Furthermore, N. gonorrhoeae induced expression of inflammatory cytokines in macrophages, suggesting a role for macrophages in recruiting polymorphonuclear leukocytes to the site of infection. These results indicate macrophages may serve as a significant replicative niche for N. gonorrhoeae and play an important role in gonorrheal pathogenesis.


Asunto(s)
Apoptosis , Citocinas/metabolismo , Interacciones Huésped-Patógeno , Macrófagos/inmunología , Macrófagos/microbiología , Neisseria gonorrhoeae/inmunología , Neisseria gonorrhoeae/fisiología , Células Cultivadas , Humanos
7.
Res Microbiol ; 174(6): 104026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36646261

RESUMEN

Bacillus anthracis is a spore-forming microbe that persists in soil and causes anthrax disease. The most natural route of infection is ingestion by grazing animals. Gastrointestinal (GI) anthrax also occurs in their monogastric predators, including humans. Exposure of carcasses to oxygen triggers sporulation and contamination of the surrounding soil completing the unusual life cycle of this microbe. The pathogenesis of GI anthrax is poorly characterized. Here, we use B. anthracis carrying the virulence plasmids pXO1 and pXO2, to model gastrointestinal disease in Guinea pigs and mice. We find that spores germinate in the GI tract and precipitate disease in a dose-dependent manner. Inoculation of vegetative bacilli also results in GI anthrax. Virulence is impacted severely by the loss of capsule (pXO2-encoded) but only moderately in absence of toxins (pXO1-encoded). Nonetheless, the lack of toxins leads to reduced bacterial replication in infected hosts. B. cereus Elc4, a strain isolated from a fatal case of inhalational anthrax-like disease, was also found to cause GI anthrax. Because transmission to new hosts depends on the release of large numbers of spores in the environment, we propose that the acquisition of pXO1- and pXO2-like plasmids may promote the successful expansion of members of the Bacillus cereus sensu lato group able to cause anthrax-like disease.


Asunto(s)
Carbunco , Bacillus anthracis , Bacillus , Toxinas Bacterianas , Enfermedades Gastrointestinales , Humanos , Animales , Ratones , Cobayas , Carbunco/microbiología , Carbunco/patología , Antígenos Bacterianos/genética , Bacillus anthracis/genética , Plásmidos , Enfermedades Gastrointestinales/veterinaria , Suelo
8.
J Proteomics ; 289: 105007, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37730087

RESUMEN

Bacillus cereus is a food-borne Gram-positive pathogen. The emetic reference strain B. cereus AH187 is surrounded by a proteinaceous surface layer (S-layer) that contributes to its physico-chemical surface properties, and promotes its adhesion in response to starvation conditions. The S-layer produced by B. cereus AH187 is composed of two proteins, SL2 and EA1, which are incorporated at different growth stages. Here, we showed that deletion of the genes encoding SL2 and EA1 produced viable cells, but decreased the glucose uptake rate at the start of growth, and induced extensive reorganization of the cellular and exoproteomes upon entry into the stationary phase. As a consequence, stationary cells were less resistant to abiotic stress. Taken together, our data indicate that the S-layer is crucial but comes at a metabolic cost that modulates the stationary phase response. SIGNIFICANCE: The emetic strains of Bacillus cereus are known to cause severe food poisoning, making it crucial to understand the factors contributing to their selective enrichment in foods. Most emetic strains are surrounded by a crystalline S-layer, which is a costly protein structure to produce. In this study, we used high-throughput proteomics to investigate how S-layer synthesis affects the allocation of cellular resources in the emetic B. cereus strain AH187. Our results demonstrate that the synthesis of the S-layer plays a crucial role in the pathogen's ability to thrive under stationary growth phase conditions by modulating the stress response, thereby promoting its lifestyle as an emetic pathogen. We conclude that the synthesis of the S-layer is a critical adaptation for emetic B. cereus to successfully colonize specific niches.


Asunto(s)
Bacillus cereus , Enfermedades Transmitidas por los Alimentos , Humanos , Bacillus cereus/genética , Bacillus cereus/metabolismo , Microbiología de Alimentos , Eméticos/análisis , Eméticos/metabolismo , Contaminación de Alimentos/análisis
9.
FASEB J ; 25(12): 4445-56, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21911592

RESUMEN

Capsule and toxin are the major virulence factors of Bacillus anthracis. The B. anthracis pleiotropic regulator CodY activates toxin gene expression by post-translationally regulating the accumulation of the global regulator AtxA. However, the role of CodY on B. anthracis capsulation and virulence of encapsulated strains has been unknown. The role of CodY in B. anthracis virulence was studied in mouse and guinea pig models. Spore outgrowth and dissemination of the vegetative cells was followed in mice by bioluminescent imaging. We also determined the state of capsulation and the iron requirement for growth of the codY mutant. In all models tested, the codY mutant strain was strongly attenuated compared to the wild-type strain and, in mice, also compared to the atxA strain. The disruption of codY did not affect either ex vivo or in vivo capsulation, whereas atxA deletion affected ex vivo capsulation only. The disruption of codY led to a delayed initiation of dissemination but similar kinetics of subsequent spread of the bacilli. The codY mutant cannot grow on heme iron as sole iron source, whereas the parental and complemented strains can. The lack of CodY-mediated transcription weakens virulence by controlling iron acquisition and synthesis of toxin, but without modifying capsulation.


Asunto(s)
Bacillus anthracis/genética , Bacillus anthracis/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Carbunco/etiología , Carbunco/microbiología , Bacillus anthracis/metabolismo , Secuencia de Bases , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Genes Bacterianos , Cobayas , Hemo/metabolismo , Hierro/metabolismo , Ratones , Mutación , Transactivadores/genética , Transactivadores/metabolismo , Virulencia/genética , Virulencia/fisiología
10.
Front Microbiol ; 13: 937862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847057

RESUMEN

Many prokaryotes are covered by a two-dimensional array of proteinaceous subunits. This surface layers (S-layer) is incompletely characterized for many microorganisms. Here, we studied Bacillus cereus AH187. A genome analysis identified two genes encoding the S-layer proteins SL2 and EA1, which we experimentally confirmed to encode the two protein components of the S-layer covering the surface of B. cereus. Shotgun proteomics analysis indicated that SL2 is the major component of the B. cereus S-layer at the beginning of exponential growth, whereas EA1 becomes more abundant than SL2 during later stages of stationary growth. Microscopy analysis revealed the spatial organization of SL2 and EA1 at the surface of B. cereus to depend on their temporal-dynamics during growth. Our results also show that a mutant strain lacking functional SL2 and EA1 proteins has distinct surface properties compared to its parental strain, in terms of stiffness and hydrophilicity during the stationary growth phase. Surface properties, self-aggregation capacity, and bacterial adhesion were observed to correlate. We conclude that the dynamics of SL2 and EA1 expression is a key determinant of the surface properties of B. cereus AH187, and that the S-layer could contribute to B. cereus survival in starvation conditions.

11.
Microorganisms ; 8(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255913

RESUMEN

Anthrax is a highly resilient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis. The bacterium presents a complex and dynamic composition of its cell envelope, which changes in response to developmental and environmental conditions and host-dependent signals. Because of their easy to access extracellular locations, B. anthracis cell envelope components represent interesting targets for the identification and development of novel therapeutic and vaccine strategies. This review will focus on the novel insights regarding the composition, physiological role, and clinical relevance of B. anthracis cell envelope components.

12.
Infect Immun ; 77(10): 4437-45, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19651859

RESUMEN

In gram-positive bacteria, CodY is an important regulator of genes whose expression changes upon nutrient limitation and acts as a repressor of virulence gene expression in some pathogenic species. Here, we report the role of CodY in Bacillus anthracis, the etiologic agent of anthrax. Disruption of codY completely abolished virulence in a toxinogenic, noncapsulated strain, indicating that the activity of CodY is required for full virulence of B. anthracis. Global transcriptome analysis of a codY mutant and the parental strain revealed extensive differences. These differences could reflect direct control for some genes, as suggested by the presence of CodY binding sequences in their promoter regions, or indirect effects via the CodY-dependent control of other regulatory proteins or metabolic rearrangements in the codY mutant strain. The differences included reduced expression of the anthrax toxin genes in the mutant strain, which was confirmed by lacZ reporter fusions and immunoblotting. The accumulation of the global virulence regulator AtxA protein was strongly reduced in the mutant strain. However, in agreement with the microarray data, expression of atxA, as measured using an atxA-lacZ transcriptional fusion and by assaying atxA mRNA, was not significantly affected in the codY mutant. An atxA-lacZ translational fusion was also unaffected. Overexpression of atxA restored toxin component synthesis in the codY mutant strain. These results suggest that CodY controls toxin gene expression by regulating AtxA accumulation posttranslationally.


Asunto(s)
Bacillus anthracis/fisiología , Bacillus anthracis/patogenicidad , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/fisiología , Factores de Virulencia/biosíntesis , Animales , Carbunco/microbiología , Antígenos Bacterianos/biosíntesis , Fusión Artificial Génica , Bacillus anthracis/genética , Toxinas Bacterianas/biosíntesis , Femenino , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Reporteros , Ratones , Factores de Transcripción/genética , Virulencia , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
13.
Methods Mol Biol ; 1954: 47-57, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30864123

RESUMEN

The envelope of gram-positive bacteria encompasses the cell wall, a rigid exoskeleton comprised of peptidoglycan that provides protection against lysis and governs bacterial cell shapes. Peptidoglycan also serves as the site of attachment for proteins and nonproteinaceous polymers that interact with the bacterial environment. Nonproteinaceous molecules include teichoic acids, capsular polysaccharides, and secondary cell wall polysaccharides (SCWP). Treatment of gram-positive bacterial cells with proteases, nucleases, and detergents results in the isolation of "murein sacculi" (i.e., peptidoglycan with bound carbohydrate polymers). Incubation of sacculi with acid or base releases carbohydrate polymers that can be purified for further biochemical characterization. This protocol describes the hydrofluoric acid extraction and purification of the secondary cell wall polymer of Bacillus anthracis that is also found in the envelope of the other members of the Bacillus cereus sensu lato group of bacteria.


Asunto(s)
Pared Celular/química , Cromatografía en Gel/métodos , Cromatografía de Fase Inversa/métodos , Bacterias Grampositivas/química , Ácido Fluorhídrico/química , Peptidoglicano/aislamiento & purificación , Polisacáridos Bacterianos/aislamiento & purificación , Bacillus anthracis/química , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Peptidoglicano/química , Polisacáridos Bacterianos/química , Ácidos Teicoicos/química , Ácidos Teicoicos/aislamiento & purificación
14.
Genome Announc ; 3(4)2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26184934

RESUMEN

We report the sequence of the Streptococcus pyogenes emm28 strain M28PF1, isolated from a patient with postpartum endometritis. The M28 protein is smaller than that of MGAS6180 (NC_007296.1). Furthermore, the 1,896,976-bp-long chromosome presents, compared to that of MGAS6180, an inversion between the two comX genes.

15.
Res Microbiol ; 161(4): 249-59, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20359529

RESUMEN

Bacillus anthracis toxin gene expression requires AtxA, a virulence regulator that also activates capsule gene transcription and controls expression of more than a hundred genes. Here we report that atxA mRNA is 2.7-kb-long and ends, after a 500 nt-long 3' untranslated region, with a stem loop structure followed by a run of U's. The presence of this structure stabilizes atxA mRNA and is necessary for AtxA maximal accumulation, full expression of the PA toxin gene, pagA and optimal PA accumulation. This structure displays terminator activity independently of its orientation when cloned between an inducible promoter and a reporter gene. The 3.6-kb-long DNA fragment carrying both AtxA promoters and the terminator is sufficient for full expression of pagA in the presence of bicarbonate. No pXO1-encoded element other than the DNA fragment encompassing the 2.7 kb atxA transcript and the pagA promoter is required for bicarbonate induction of pagA transcription.


Asunto(s)
Antígenos Bacterianos/genética , Bacillus anthracis/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Bicarbonatos/metabolismo , Regulación Bacteriana de la Expresión Génica , Regiones Terminadoras Genéticas , Transactivadores/genética , Antígenos Bacterianos/metabolismo , Bacillus anthracis/química , Bacillus anthracis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Secuencias Invertidas Repetidas , Conformación de Ácido Nucleico , Transactivadores/química , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA