RESUMEN
BACKGROUND: Causal explanations for the association of young motherhood with increased risk for child attention-deficit hyperactivity disorder (ADHD) remain unclear. METHODS: The ABCD Study recruited 11,878 youth from 22 sites across the United States between June 1, 2016 and October 15, 2018. This cross-sectional analysis of 8,514 children aged 8-11 years excluded 2,260 twins/triplets, 265 adopted children, and 839 younger siblings. We examined associations of maternal age with ADHD clinical range diagnoses based on the Child Behavior Checklist and NIH Toolbox Flanker Attention Scores using mixed logistic and linear regression models, respectively. We conducted confounding and causal mediation analyses using genotype array, demographic, socioeconomic, and prenatal environment data to investigate which genetic and environmental variables may explain the association between young maternal age and child ADHD. RESULTS: In crude models, each 10-year increase in maternal age was associated with 32% decreased odds of ADHD clinical range diagnosis (OR = 0.68; 95% CI [0.59, 0.78]) and 1.09-points increased NIH Flanker Attention Scores (ß = 1.09; 95% CI [0.76, 1.41]), indicating better child visual selective attention. However, adjustment for confounders weakened these associations. The strongest confounders were family income, caregiver education, and ADHD polygenic risk score for ADHD clinical range diagnoses, and family income, caregiver education, and race/ethnicity for NIH Flanker Attention Scores. Breastfeeding duration, prenatal alcohol exposure, and prenatal tobacco exposure were responsible for up to 18%, 6%, and 4% mediation, respectively. CONCLUSIONS: Socioeconomic disadvantages were likely the primary explanation for the association of young maternal age with child ADHD, although genetics and modifiable environmental factors also played a role. Public policies aimed at reducing the burden of ADHD associated with young motherhood should target socioeconomic inequalities and support young pregnant women by advocating for reduced prenatal tobacco exposure and healthy breastfeeding practices after childbirth.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Efectos Tardíos de la Exposición Prenatal , Recién Nacido , Adolescente , Niño , Humanos , Embarazo , Femenino , Edad Materna , Trastorno por Déficit de Atención con Hiperactividad/etiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Estudios Transversales , Efectos Tardíos de la Exposición Prenatal/epidemiología , PartoRESUMEN
Sex impacts the development of the brain and cognition differently across individuals. However, the literature on brain sex dimorphism in humans is mixed. We aim to investigate the biological underpinnings of the individual variability of sexual dimorphism in the brain and its impact on cognitive performance. To this end, we tested whether the individual difference in brain sex would be linked to that in cognitive performance that is influenced by genetic factors in prepubertal children (N = 9,658, ages 9-10 years old; the Adolescent Brain Cognitive Development study). To capture the interindividual variability of the brain, we estimated the probability of being male or female based on the brain morphometry and connectivity features using machine learning (herein called a brain sex score). The models accurately classified the biological sex with a test ROC-AUC of 93.32%. As a result, a greater brain sex score correlated significantly with greater intelligence (pfdr < .001, ηp2 = .011-.034; adjusted for covariates) and higher cognitive genome-wide polygenic scores (GPSs) (pfdr < .001, ηp2 < .005). Structural equation models revealed that the GPS-intelligence association was significantly modulated by the brain sex score, such that a brain with a higher maleness score (or a lower femaleness score) mediated a positive GPS effect on intelligence (indirect effects = .006-.009; p = .002-.022; sex-stratified analysis). The finding of the sex modulatory effect on the gene-brain-cognition relationship presents a likely biological pathway to the individual and sex differences in the brain and cognitive performance in preadolescence.
Asunto(s)
Cognición , Individualidad , Adolescente , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Inteligencia , Masculino , Herencia MultifactorialRESUMEN
A growing number of studies have examined alterations in white matter organization in people with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been mixed which may be partially due to relatively small sample sizes among studies. Altered structural connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find reliable effects, we present a multi-cohort analysis of dMRI metrics across 3047 individuals from 28 cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between the Psychiatric Genomics Consortium and the Enhancing NeuroImaging Genetics through Meta-Analysis consortium). Comparing regional white matter metrics across the full brain in 1426 individuals with PTSD and 1621 controls (2174 males/873 females) between ages 18-83, 92% of whom were trauma-exposed, we report associations between PTSD and disrupted white matter organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus callosum (Cohen's d = -0.11, p = 0.0055). The tapetum connects the left and right hippocampus, for which structure and function have been consistently implicated in PTSD. Results were consistent even after accounting for the effects of multiple potentially confounding variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current alcohol abuse or dependence, and current use of psychotropic medications. Our results show that PTSD may be associated with alterations in the broader hippocampal network.
Asunto(s)
Trastornos por Estrés Postraumático , Sustancia Blanca , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anisotropía , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos por Estrés Postraumático/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto JovenRESUMEN
Brain predicted age difference, or BrainPAD, compares chronological age to an age estimate derived by applying machine learning (ML) to MRI brain data. BrainPAD studies in youth have been relatively limited, often using only a single MRI modality or a single ML algorithm. Here, we use multimodal MRI with a stacked ensemble ML approach that iteratively applies several ML algorithms (AutoML). Eligible participants in the Healthy Brain Network (N = 489) were split into training and test sets. Morphometry estimates, white matter connectomes, or both were entered into AutoML to develop BrainPAD models. The best model was then applied to a held-out evaluation dataset, and associations with psychometrics were estimated. Models using morphometry and connectomes together had a mean absolute error of 1.18 years, outperforming models using a single MRI modality. Lower BrainPAD values were associated with more symptoms on the CBCL (pcorr = .012) and lower functioning on the Children's Global Assessment Scale (pcorr = .012). Higher BrainPAD values were associated with better performance on the Flanker task (pcorr = .008). Brain age prediction was more accurate using ComBat-harmonized brain data (MAE = 0.26). Associations with psychometric measures remained consistent after ComBat harmonization, though only the association with CGAS reached statistical significance in the reduced sample. Our findings suggest that BrainPAD scores derived from unharmonized multimodal MRI data using an ensemble ML approach may offer a clinically relevant indicator of psychiatric and cognitive functioning in youth.
Asunto(s)
Síntomas Conductuales/fisiopatología , Imagen de Difusión Tensora/métodos , Sustancia Gris/anatomía & histología , Desarrollo Humano/fisiología , Aprendizaje Automático , Red Nerviosa/anatomía & histología , Sustancia Blanca/anatomía & histología , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/crecimiento & desarrollo , Humanos , Masculino , Modelos Teóricos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/crecimiento & desarrollo , Psicometría , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/crecimiento & desarrollo , Adulto JovenRESUMEN
BACKGROUND: Cognitive behavioral therapy (CBT) is an effective, first-line treatment for pediatric obsessive-compulsive disorder (OCD). While neural predictors of treatment outcomes have been identified in adults with OCD, robust predictors are lacking for pediatric patients. Herein, we sought to identify brain structural markers of CBT response in youth with OCD. METHODS: Twenty-eight children/adolescents with OCD and 27 matched healthy participants (7- to 18-year-olds, M = 11.71 years, SD = 3.29) completed high-resolution structural and diffusion MRI (all unmedicated at time of scanning). Patients with OCD then completed 12-16 sessions of CBT. Subcortical volume and cortical thickness were estimated using FreeSurfer. Structural connectivity (streamline counts) was estimated using MRtrix. RESULTS: Thinner cortex in nine frontoparietal regions significantly predicted improvement in Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) scores (all ts > 3.4, FDR-corrected ps < .05). These included middle and superior frontal, angular, lingual, precentral, superior temporal, and supramarginal gyri (SMG). Vertex-wise analyses confirmed a significant left SMG cluster, showing large effect size (Cohen's d = 1.42) with 72.22% specificity and 90.00% sensitivity in predicting CBT response. Ten structural connections between cingulo-opercular regions exhibited fewer streamline counts in OCD (all ts > 3.12, Cohen's ds > 0.92) compared with healthy participants. These connections predicted post-treatment CY-BOCS scores, beyond pretreatment severity and demographics, though not above and beyond cortical thickness. CONCLUSIONS: The current study identified group differences in structural connectivity (reduced among cingulo-opercular regions) and cortical thickness predictors of CBT response (thinner frontoparietal cortices) in unmedicated children/adolescents with OCD. These data suggest, for the first time, that cortical and white matter features of task control circuits may be useful in identifying which pediatric patients respond best to individual CBT.
Asunto(s)
Biomarcadores/metabolismo , Encéfalo/metabolismo , Terapia Cognitivo-Conductual , Trastorno Obsesivo Compulsivo/metabolismo , Trastorno Obsesivo Compulsivo/terapia , Adolescente , Encéfalo/diagnóstico por imagen , Niño , Femenino , Humanos , Masculino , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Resultado del TratamientoRESUMEN
Serotonergic neurotransmission, potentially through effects on the brain's default mode network (DMN), may regulate aspects of attention including impulse control. Indeed, genetic variants of the serotonin transporter (5-HTT) have been implicated in impulsivity and related psychopathology. Yet it remains unclear the mechanism by which the 5-HTT genetic variants contribute to individual variability in impulse control. Here, we tested whether DMN connectivity mediates an association between the 5-HTT genetic variants and impulsivity. Participants (N = 92) were from a family cohort study of depression in which we have previously shown a broad distribution of 5-HTT variants. We genotyped for 5-HTTLPR and rs25531 (stratified by transcriptional efficiency: 8 low/low, 53 low/high, and 31 high/high), estimated DMN structural connectivity using diffusion probabilistic tractography, and assessed behavioral measures of impulsivity (from 12 low/low, 48 low/high, and 31 high/high) using the Continuous Performance Task. We found that low transcriptional efficiency genotypes were associated with decreased connection strength between the posterior DMN and the superior frontal gyrus (SFG). Path modeling demonstrated that decreased DMN-SFG connectivity mediated the association between low-efficiency genotypes and increased impulsivity. Taken together, this study suggests a gene-brain-behavior pathway that perhaps underlies the role of the serotonergic neuromodulation in impulse control.
Asunto(s)
Encéfalo/fisiología , Conducta Impulsiva/fisiología , Vías Nerviosas/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Adolescente , Adulto , Anciano , Niño , Estudios de Cohortes , Depresión/genética , Imagen de Difusión Tensora , Femenino , Variación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Obstructive sleep apnea syndrome (OSAS) is associated with intermittent hypoxia and sleep loss. In children, impairments of cognitive function are important manifestations, but the underlying pathology is unknown. We hypothesized that OSAS would affect the dentate gyrus, a hippocampal subdivision essential to neurogenesis and cognition, and that this impact would further affect cognitive function in children. In children with OSAS (n = 11) and control subjects (n = 12; age and sex matched), we performed diffusion tensor imaging and structural MRI, polysomnography, and neuropsychological assessments. We found that OSAS was associated with decreased mean diffusivity of the left dentate gyrus (p = 0.002; false discovery rate corrected; adjusting for sex, age, and body mass index), showing a large effect size (partial η2 = 0.491), but not with any other structural measures across the brain. Decreased dentate gyrus mean diffusivity correlated with a higher apnea hypopnea index (Spearman's r = -0.50, p = 0.008) and a greater arousal index (r = -0.44, p = 0.017). OSAS did not significantly affect neuropsychological measures (p values >0.5); however, a lower verbal learning score correlated with lower dentate gyrus mean diffusivity (r = 0.54, p = 0.004). Path analysis demonstrated that dentate gyrus mean diffusivity mediates the impact of OSAS on verbal learning capacity. Finally, the diagnostic accuracy of a regression model based on dentate gyrus mean diffusivity reached 85.8% (cross validated). This study demonstrates a likely pathway of effects of OSAS on neurocognitive function in children, as well as potential utility of the dentate gyrus mean diffusivity as an early marker of brain pathology in children with OSAS.SIGNIFICANCE STATEMENT In this study we investigate the relationships between dentate gyrus structure, hippocampus-dependent cognition, and obstructive sleep apnea syndrome (OSAS). We demonstrate lower mean diffusivity of the dentate gyrus in children with OSAS, which correlates with a lower verbal learning and memory score. This study provides new evidence of disrupted microstructure of the dentate gyrus in children with OSAS that may help explain some of the neurocognitive deficits described in these children.
Asunto(s)
Giro Dentado/fisiología , Memoria , Apnea Obstructiva del Sueño/fisiopatología , Aprendizaje Verbal , Adolescente , Estudios de Casos y Controles , Giro Dentado/diagnóstico por imagen , Giro Dentado/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Apnea Obstructiva del Sueño/diagnóstico por imagenRESUMEN
UNLABELLED: Clinical anxiety is associated with generalization of conditioned fear, in which innocuous stimuli elicit alarm. Using Pavlovian fear conditioning (electric shock), we quantify generalization as the degree to which subjects' neurobiological responses track perceptual similarity gradients to a conditioned stimulus. Previous studies show that the ventromedial prefrontal cortex (vmPFC) inversely and ventral tegmental area directly track the gradient of perceptual similarity to the conditioned stimulus in healthy individuals, whereas clinically anxious individuals fail to discriminate. Here, we extend this work by identifying specific functional roles within the prefrontal-limbic circuit. We analyzed fMRI time-series acquired from 57 human subjects during a fear generalization task using entropic measures of circuit-wide regulation and feedback (power spectrum scale invariance/autocorrelation), in combination with structural (diffusion MRI-probabilistic tractography) and functional (stochastic dynamic causal modeling) measures of prefrontal-limbic connectivity within the circuit. Group comparison and correlations with anxiety severity across 57 subjects revealed dysregulatory dynamic signatures within the inferior frontal gyrus (IFG), which our prior work has linked to impaired feedback within the circuit. Bayesian model selection then identified a fully connected prefrontal-limbic model comprising the IFG, vmPFC, and amygdala. Dysregulatory IFG dynamics were associated with weaker reciprocal excitatory connectivity between the IFG and the vmPFC. The vmPFC exhibited inhibitory influence on the amygdala. Our current results, combined with our previous work across a threat-perception spectrum of 137 subjects and a meta-analysis of 366 fMRI studies, dissociate distinct roles for three prefrontal-limbic regions, wherein the IFG provides evaluation of stimulus meaning, which then informs the vmPFC in inhibiting the amygdala. SIGNIFICANCE STATEMENT: Affective neuroscience has generally treated prefrontal regions (orbitofrontal cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex) equivalently as inhibitory components of the prefrontal-limbic system. Yet research across the anxiety spectrum suggests that the inferior frontal gyrus may have a more complex role in emotion regulation, as this region shows abnormal function in disorders of both hyperarousal and hypoarousal. Using entropic measures of circuit-wide regulation and feedback, in combination with measures of structural and functional connectivity, we dissociate distinct roles for three prefrontal-limbic regions, wherein the inferior frontal gyrus provides evaluation of stimulus meaning, which then informs the ventromedial prefrontal cortex in inhibiting the amygdala. This reconfiguration coheres with studies of conceptual disambiguation also implicating the inferior frontal gyrus.
Asunto(s)
Amígdala del Cerebelo/fisiología , Trastornos de Ansiedad/fisiopatología , Retroalimentación , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Adulto , Mapeo Encefálico , Imagen de Difusión Tensora , Emociones/fisiología , Miedo/fisiología , Femenino , Humanos , Sistema Límbico/fisiopatología , Imagen por Resonancia Magnética , Modelos EstadísticosRESUMEN
Given the high prevalence rates of comorbidity of anxiety and depressive disorders, identifying a common neural pathway to both disorders is important not only for better diagnosis and treatment, but also for a more complete conceptualization of each disease. Hippocampal abnormalities have been implicated in anxiety and depression, separately; however, it remains unknown whether these abnormalities are also implicated in their comorbidity. Here we address this question by testing 32 adults with generalized anxiety disorder (15 GAD only and 17 comorbid MDD) and 25 healthy controls (HC) using multimodal MRI (structure, diffusion and functional) and automated hippocampal segmentation. We demonstrate that (i) abnormal microstructure of the CA1 and CA2-3 is associated with GAD/MDD comorbidity and (ii) decreased anterior hippocampal reactivity in response to repetition of the threat cue is associated with GAD (with or without MDD comorbidity). In addition, mediation-structural equation modeling (SEM) reveals that our hippocampal and dimensional symptom data are best explained by a model describing a significant influence of abnormal hippocampal microstructure on both anxiety and depression-mediated through its impact on abnormal hippocampal threat processing. Collectively, our findings show a strong association between changes in hippocampal microstructure and threat processing, which together may present a common neural pathway to comorbidity of anxiety and depression.
Asunto(s)
Ansiedad/epidemiología , Ansiedad/patología , Depresión/epidemiología , Depresión/patología , Hipocampo/patología , Aprendizaje por Asociación/fisiología , Comorbilidad , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Escalas de Valoración Psiquiátrica , Autoinforme , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología , Adulto JovenRESUMEN
Anorexia nervosa (AN) is a debilitating illness and existing interventions are only modestly effective. This study aimed to determine whether AN pathophysiology is associated with altered connections within fronto-accumbal circuitry subserving reward processing. Diffusion and resting-state functional MRI scans were collected in female inpatients with AN (n = 22) and healthy controls (HC; n = 18) between the ages of 16 and 25 years. Individuals with AN were scanned during the acute, underweight phase of the illness and again following inpatient weight restoration. HC were scanned twice over the same timeframe. Based on univariate and multivariate analyses of fronto-accumbal circuitry, underweight individuals with AN were found to have increased structural connectivity (diffusion probabilistic tractography), increased white matter anisotropy (tract-based spatial statistics), increased functional connectivity (seed-based correlation in resting-state fMRI), and altered effective connectivity (spectral dynamic causal modeling). Following weight restoration, fronto-accumbal structural connectivity continued to be abnormally increased bilaterally with large (partial η2 = 0.387; right NAcc-OFC) and moderate (partial η2 = 0.197; left NAcc-OFC) effect sizes. Increased structural connectivity within fronto-accumbal circuitry in the underweight state correlated with severity of eating disorder symptoms. Taken together, the findings from this longitudinal, multimodal neuroimaging study offer converging evidence of atypical fronto-accumbal circuitry in AN. Hum Brain Mapp 37:3835-3846, 2016. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Anorexia Nerviosa/diagnóstico por imagen , Anorexia Nerviosa/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Recompensa , Adolescente , Adulto , Anorexia Nerviosa/terapia , Femenino , Hospitalización , Humanos , Pacientes Internos , Estudios Longitudinales , Imagen por Resonancia Magnética , Imagen Multimodal , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Descanso , Resultado del Tratamiento , Aumento de Peso , Adulto JovenRESUMEN
The ventral tegmental area (VTA) has been primarily implicated in reward-motivated behavior. Recently, aberrant dopaminergic VTA signaling has also been implicated in anxiety-like behaviors in animal models. These findings, however, have yet to be extended to anxiety in humans. Here we hypothesized that clinical anxiety is linked to dysfunction of the mesocorticolimbic circuit during threat processing in humans; specifically, excessive or dysregulated activity of the mesocorticolimbic aversion circuit may be etiologically related to errors in distinguishing cues of threat versus safety, also known as "overgeneralization of fear." To test this, we recruited 32 females with generalized anxiety disorder and 25 age-matched healthy control females. We measured brain activity using fMRI while participants underwent a fear generalization task consisting of pseudo-randomly presented rectangles with systematically varying widths. A mid-sized rectangle served as a conditioned stimulus (CS; 50% electric shock probability) and rectangles with widths of CS ±20%, ±40%, and ±60% served as generalization stimuli (GS; never paired with electric shock). Healthy controls showed VTA reactivity proportional to the cue's perceptual similarity to CS (threat). In contrast, patients with generalized anxiety disorder showed heightened and less discriminating VTA reactivity to GS, a feature that was positively correlated with trait anxiety, as well as increased mesocortical and decreased mesohippocampal coupling. Our results suggest that the human VTA and the mesocorticolimbic system play a crucial role in threat processing, and that abnormalities in this system are implicated in maladaptive threat processing in clinical anxiety.
Asunto(s)
Trastornos de Ansiedad/fisiopatología , Miedo/fisiología , Generalización Psicológica/fisiología , Red Nerviosa/fisiopatología , Área Tegmental Ventral/fisiopatología , Adolescente , Adulto , Ansiedad/fisiopatología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia MagnéticaRESUMEN
The ventromedial prefrontal cortex (vmPFC) plays a critical role in a number of evaluative processes, including risk assessment. Impaired discrimination between threat and safety is considered a hallmark of clinical anxiety. Here, we investigated the circuit-wide structural and functional mechanisms underlying vmPFC threat-safety assessment in humans. We tested patients with generalized anxiety disorder (GAD; n = 32, female) and healthy controls (n = 25, age-matched female) on a task that assessed the generalization of conditioned threat during fMRI scanning. The task consisted of seven rectangles of graded widths presented on a screen; only the midsize one was paired with mild electric shock [conditioned stimulus (CS)], while the others, safety cues, systematically varied in width by ±20, 40, and 60% [generalization stimuli (GS)] compared with the CS. We derived an index reflecting vmPFC functioning from the BOLD reactivity on a continuum of threat (CS) to safety (GS least similar to CS); patients with GAD showed less discrimination between threat and safety cues, compared with healthy controls (Greenberg et al., 2013b). Using structural, functional (i.e., resting-state), and diffusion MRI, we measured vmPFC thickness, vmPFC functional connectivity, and vmPFC structural connectivity within the corticolimbic systems. The results demonstrate that all three factors predict individual variability of vmPFC threat assessment in an independent fashion. Moreover, these neural features are also linked to GAD, most likely via an vmPFC fear generalization. Our results strongly suggest that vmPFC threat processing is closely associated with broader corticolimbic circuit anomalies, which may synergistically contribute to clinical anxiety.
Asunto(s)
Trastornos de Ansiedad/patología , Trastornos de Ansiedad/fisiopatología , Miedo/fisiología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/citología , Adolescente , Adulto , Mapeo Encefálico , Condicionamiento Psicológico/fisiología , Imagen de Difusión Tensora , Femenino , Generalización Psicológica/fisiología , Humanos , Modelos Logísticos , Imagen por Resonancia Magnética , Modelos Neurológicos , Análisis Multivariante , Adulto JovenRESUMEN
Cognitive processing biases, such as increased attention to threat, are gaining recognition as causal factors in anxiety. Yet, little is known about the anatomical pathway by which threat biases cognition and how genetic factors might influence the integrity of this pathway, and thus, behavior. For 40 normative adults, we reconstructed the entire amygdalo-prefrontal white matter tract (uncinate fasciculus) using diffusion tensor weighted MRI and probabilistic tractography to test the hypothesis that greater fiber integrity correlates with greater nonconscious attention bias to threat as measured by a backward masked dot-probe task. We used path analysis to investigate the relationship between brain-derived nerve growth factor genotype, uncinate fasciculus integrity, and attention bias behavior. Greater structural integrity of the amygdalo-prefrontal tract correlates with facilitated attention bias to nonconscious threat. Genetic variability associated with brain-derived nerve growth factor appears to influence the microstructure of this pathway and, in turn, attention bias to nonconscious threat. These results suggest that the integrity of amygdalo-prefrontal projections underlie nonconscious attention bias to threat and mediate genetic influence on attention bias behavior. Prefrontal cognition and attentional processing in high bias individuals appear to be heavily influenced by nonconscious threat signals relayed via the uncinate fasciculus.
Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Atención , Factor Neurotrófico Derivado del Encéfalo/genética , Emociones , Corteza Prefrontal/anatomía & histología , Sustancia Blanca/anatomía & histología , Adulto , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Técnicas de Genotipaje , Humanos , Procesamiento de Imagen Asistido por Computador , Individualidad , Masculino , Pruebas Neuropsicológicas , Polimorfismo Genético , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Adulto JovenRESUMEN
Near infrared spectroscopy (NIRS) is an emerging imaging technique that is relatively inexpensive, portable, and particularly well suited for collecting data in ecological settings. Therefore, it holds promise as a potential neurodiagnostic for young children. We set out to explore whether NIRS could be utilized in assessing the risk of developmental psychopathology in young children. A growing body of work indicates that temperament at young age is associated with vulnerability to psychopathology later on in life. In particular, it has been shown that low effortful control (EC), which includes the focusing and shifting of attention, inhibitory control, perceptual sensitivity, and a low threshold for pleasure, is linked to conditions such as anxiety, depression and attention deficit hyperactivity disorder (ADHD). Physiologically, EC has been linked to a control network spanning among other sites the prefrontal cortex. Several psychopathologies, such as depression and ADHD, have been shown to result in compromised small-world network properties. Therefore we set out to explore the relationship between EC and the small-world properties of PFC using NIRS. NIRS data were collected from 44 toddlers, ages 3-5, while watching naturalistic stimuli (movie clips). Derived complex network measures were then correlated to EC as derived from the Children's Behavior Questionnaire (CBQ). We found that reduced levels of EC were associated with compromised small-world properties of the prefrontal network. Our results suggest that the longitudinal NIRS studies of complex network properties in young children hold promise in furthering our understanding of developmental psychopathology.
Asunto(s)
Neuroimagen Funcional/métodos , Trastornos Mentales/fisiopatología , Red Nerviosa/fisiopatología , Corteza Prefrontal/fisiopatología , Psicopatología/métodos , Espectroscopía Infrarroja Corta/métodos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Conducta Infantil , Preescolar , Emociones , Movimientos Oculares , Femenino , Fijación Ocular/fisiología , Humanos , Masculino , Trastornos Mentales/psicología , Películas Cinematográficas , Red Nerviosa/patología , Estimulación Luminosa , Corteza Prefrontal/patología , Medición de Riesgo , TemperamentoRESUMEN
Neural consequences of social disparities are not yet rigorously investigated. How socioeconomic conditions influence children's connectome development remains unknown. This paper endeavors to gauge how precisely the connectome structure of the brain can predict an individual's social environment, thereby inversely assessing how social influences are engraved in the neural development of the Adolescent brain. Utilizing Adolescent Brain and Cognition Development (ABCD) data (9099 children residing in the United States), we found that social conditions both at the household and neighborhood levels are significantly associated with specific neural connections. Solely with brain connectome data, we train a linear support vector machine (SVM) to predict socio-economic conditions of those adolescents. The classification performance generally improves when the thresholds of the advantageous and disadvantageous environments compartmentalize the extreme cases. Among the tested thresholds, the 20th and 80th percentile thresholds using the dual combination of household income and neighborhood education yielded the highest Area Under the Precision-Recall Curve (AUPRC) of 0.8224. We identified 8 significant connections that critically contribute to predicting social environments in the parietal lobe and frontal lobe. Insights into social factors that contribute to early brain connectome development is critical to mitigate the disadvantages of children growing up in unfavorable neighborhoods.
Asunto(s)
Encéfalo , Conectoma , Humanos , Adolescente , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Niño , Factores Socioeconómicos , Máquina de Vectores de Soporte , Estados Unidos , Cognición/fisiología , Imagen por Resonancia Magnética , Medio SocialRESUMEN
The human brain undergoes structural and functional changes during childhood, a critical period in cognitive and behavioral development. Understanding the genetic architecture of the brain development in children can offer valuable insights into the development of the brain, cognition, and behaviors. Here, we integrated brain imaging-genetic-phenotype data from over 8,600 preadolescent children of diverse ethnic backgrounds using multivariate statistical techniques. We found a low-to-moderate level of SNP-based heritability in most IDPs, which is lower compared to the adult brain. Using sparse generalized canonical correlation analysis (SGCCA), we identified several covariation patterns among genome-wide polygenic scores (GPSs) of 29 traits, 7 different modalities of brain imaging-derived phenotypes (IDPs), and 266 cognitive and psychological phenotype data. In structural MRI, significant positive associations were observed between total grey matter volume, left ventral diencephalon volume, surface area of right accumbens and the GPSs of cognition-related traits. Conversely, negative associations were found with the GPSs of ADHD, depression and neuroticism. Additionally, we identified a significant positive association between educational attainment GPS and regional brain activation during the N-back task. The BMI GPS showed a positive association with fractional anisotropy (FA) of connectivity between the cerebellum cortex and amygdala in diffusion MRI, while the GPSs for educational attainment and cannabis use were negatively associated with the same IDPs. Our GPS-based prediction models revealed substantial genetic contributions to cognitive variability, while the genetic basis for many mental and behavioral phenotypes remained elusive. This study delivers a comprehensive map of the relationships between genetic profiles, neuroanatomical diversity, and the spectrum of cognitive and behavioral traits in preadolescence.
RESUMEN
BACKGROUND: Having multiple previous generations with depression in the family increases offspring risk for psychopathology. Parental depression has been associated with smaller subcortical brain volumes in their children, but whether two prior generations with depression is associated with further decreases is unclear. METHODS: Using two independent cohorts, 1) a Three-Generation Study (TGS, N = 65) with direct clinical interviews of adults and children across all three generations, and 2) the Adolescent Brain Cognitive Development Study (ABCD, N = 10,626) of 9-10 year-old children with family history assessed by a caregiver, we tested whether having more generations of depression in the family was associated with smaller subcortical volumes (using structural MRI). RESULTS: In TGS, caudate, pallidum and putamen showed decreasing volumes with higher familial risk for depression. Having a parent and a grandparent with depression was associated with decreased volume compared to having no familial depression in these regions. Putamen volume was associated with depression at eight-year follow-up. In ABCD, smaller pallidum and putamen were associated with family history, which was driven by parental depression, regardless of grandparental depression. LIMITATIONS: Discrepancies between cohorts could be due to interview type (clinical or self-report) and informant (individual or common informant), sample size or age. Future analyses of follow-up ABCD waves will be able to assess whether effects of grandparental depression on brain markers become more apparent as the children enter young adulthood. CONCLUSIONS: Basal ganglia regional volumes are significantly smaller in offspring with a family history of depression in two independent cohorts.
Asunto(s)
Imagen por Resonancia Magnética , Putamen , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/fisiopatología , Estudios de Cohortes , Depresión/epidemiología , Depresión/fisiopatología , Trastorno Depresivo/epidemiología , Trastorno Depresivo/fisiopatología , Familia Extendida , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiopatología , Abuelos/psicología , Tamaño de los Órganos , Padres/psicología , Putamen/diagnóstico por imagen , Putamen/fisiopatologíaRESUMEN
INTRODUCTION: Neuropsychiatric symptoms (NPS), such as depression and anxiety, are observed in 90% of Alzheimer's disease (AD) patients, two-thirds of whom are women. NPS usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brain-wide neuronal mechanisms. METHODS: To gain mechanistic insight into how anxiety impacts AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity utilizing the ArcCreERT2 x enhanced yellow fluorescent protein (eYFP) x APP/PS1 (AD) mice. The ADNI dataset was used to determine the impact of anxiety on AD progression in human subjects. RESULTS: Female APP/PS1 mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control (Ctrl) mice and male mice. Brain-wide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in APP/PS1 mice. Sex-specific eYFP+/c-Fos+ changes were observed; female APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in dorsal CA3 (dCA3), while male APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in the dorsal dentate gyrus (dDG). In the ADNI dataset, anxiety predicted transition to dementia. Female subjects positive for anxiety and amyloid transitioned more quickly to dementia than male subjects. CONCLUSIONS: While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that there are sex differences in AD network dysfunction, and that personalized medicine may benefit male and female AD patients rather than a one size fits all approach.
RESUMEN
The enduring influence of early life stress (ELS) on brain and cognitive development has been widely acknowledged, yet the precise mechanisms underlying this association remain elusive. We hypothesize that ELS might disrupt the genome-wide influence on brain morphology and connectivity development, consequently exerting a detrimental impact on children's cognitive ability. We analyzed the multimodal data of DNA genotypes, brain imaging (structural and diffusion MRI), and neurocognitive battery (NIH Toolbox) of 4276 children (ages 9-10 years, European ancestry) from the Adolescent Brain Cognitive Development (ABCD) study. The genome-wide influence on cognitive function was estimated using the polygenic score (GPS). By using brain morphometry and tractography, we identified the brain correlates of the cognition GPSs. Statistical analyses revealed relationships for the gene-brain-cognition pathway. The brain structural variance significantly mediated the genetic influence on cognition (indirect effect = 0.016, PFDR < 0.001). Of note, this gene-brain relationship was significantly modulated by abuse, resulting in diminished cognitive capacity (Index of Moderated Mediation = -0.007; 95 % CI = -0.012 â¼ -0.002). Our results support a novel gene-brain-cognition model likely elucidating the long-lasting negative impact of ELS on children's cognitive development.