Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Lasers Surg Med ; 55(5): 480-489, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37003294

RESUMEN

OBJECTIVES: Postoperative bile leakage is a common complication of hepatobiliary surgery and frequently requires procedural intervention. Bile-label 760 (BL-760), a novel near-infrared dye, has emerged as a promising tool for identifying biliary structures and leakage, owing to its rapid excretion and strong bile specificity. This study aimed to assess the intraoperative detection of biliary leakage using intravenously administered BL-760 compared with intravenous (IV) and intraductal (ID) indocyanine green (ICG). MATERIALS AND METHODS: Laparotomy and segmental hepatectomy with vascular control were performed on two 25-30 kg pigs. ID ICG, IV ICG, and IV BL-760 were administered separately, followed by an examination of the liver parenchyma, cut liver edge, and extrahepatic bile ducts for areas of leakage. The duration of intra- and extrahepatic fluorescence detection was assessed, and the target-to-background (TBR) of the bile ducts to the liver parenchyma was quantitatively measured. RESULTS: In Animal 1, after intraoperative BL-760 injection, three areas of leaking bile were identified within 5 min on the cut liver edge with a TBR of 2.5-3.8 that was not apparent to the naked eye. In contrast, after IV ICG administration, the background parenchymal signal and bleeding obscured the areas of bile leakage. A second dose of BL-760 demonstrated the utility of repeated injections, confirming two of the three previously visualized areas of bile leakage and revealing one previously unseen leak. In Animal 2, neither ID ICG nor IV BL-760 injections showed obvious areas of bile leakage. However, fluorescence signals were observed within the superficial intrahepatic bile ducts after both injections. CONCLUSIONS: BL-760 enables the rapid intraoperative visualization of small biliary structures and leaks, with the benefits of fast excretion, repeatable intravenous administration, and high-fluorescence TBR in the liver parenchyma. Potential applications include the identification of bile flow in the portal plate, biliary leak or duct injury, and postoperative monitoring of drain output. A thorough assessment of the intraoperative biliary anatomy could limit the need for postoperative drain placement, a possible contributor to severe complications and postoperative bile leak.


Asunto(s)
Bilis , Colorantes Fluorescentes , Porcinos , Animales , Hepatectomía/efectos adversos , Conductos Biliares/diagnóstico por imagen , Conductos Biliares/cirugía , Conductos Biliares/lesiones , Verde de Indocianina
2.
Nat Commun ; 15(1): 3039, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589390

RESUMEN

Astrocytes are a direct target of neuromodulators and can influence neuronal activity on broad spatial and temporal scales in response to a rise in cytosolic calcium. However, our knowledge about how astrocytes are recruited during different animal behaviors remains limited. To measure astrocyte activity calcium in vivo during normative behaviors, we utilize a high-resolution, long working distance multicore fiber optic imaging system that allows visualization of individual astrocyte calcium transients in the cerebral cortex of freely moving mice. We define the spatiotemporal dynamics of astrocyte calcium changes during diverse behaviors, ranging from sleep-wake cycles to the exploration of novel objects, showing that their activity is more variable and less synchronous than apparent in head-immobilized imaging conditions. In accordance with their molecular diversity, individual astrocytes often exhibit distinct thresholds and activity patterns during explorative behaviors, allowing temporal encoding across the astrocyte network. Astrocyte calcium events were induced by noradrenergic and cholinergic systems and modulated by internal state. The distinct activity patterns exhibited by astrocytes provides a means to vary their neuromodulatory influence in different behavioral contexts and internal states.


Asunto(s)
Astrocitos , Calcio , Ratones , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Diagnóstico por Imagen , Corteza Cerebral/metabolismo , Señalización del Calcio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA