Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochim Biophys Acta ; 1708(2): 196-200, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-15953476

RESUMEN

Projection maps of a V(1)-Vma5p hybrid complex, composed of subunit C (Vma5p) of Saccharomyces cerevisiae V-ATPase and the C-depleted V(1) from Manduca sexta, were determined from single particle electron microscopy. V(1)-Vma5p consists of a headpiece and an elongated wedgelike stalk with a 2.1x3.0 nm protuberance and a 9.5x7.5 globular domain, interpreted to include Vma5p. The interaction face of Vma5p in V(1) was explored by chemical modification experiments.


Asunto(s)
Manduca/enzimología , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/química , Animales , Electroforesis en Gel de Poliacrilamida , Microscopía Electrónica , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , ATPasas de Translocación de Protón Vacuolares/aislamiento & purificación
2.
Structure ; 20(5): 899-910, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22579255

RESUMEN

Mediator, a large (21 polypeptides, MW ∼1 MDa) complex conserved throughout eukaryotes, plays an essential role in control of gene expression by conveying regulatory signals that influence the activity of the preinitiation complex. However, the precise mode of interaction between Mediator and RNA polymerase II (RNAPII), and the mechanism of regulation by Mediator remain elusive. We used cryo-electron microscopy and reconstituted in vitro transcription assays to characterize a transcriptionally-active complex including the Mediator Head module and components of a minimum preinitiation complex (RNAPII, TFIIF, TFIIB, TBP, and promoter DNA). Our results reveal how the Head interacts with RNAPII, affecting its conformation and function.


Asunto(s)
Complejo Mediador/química , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Complejo Mediador/metabolismo , Complejo Mediador/ultraestructura , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo
3.
PLoS One ; 5(1): e8586, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20062530

RESUMEN

In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination.


Asunto(s)
Proteínas de Ciclo Celular/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel de Agar , Humanos , Microscopía Electrónica , Modelos Moleculares
4.
J Biol Chem ; 279(46): 47866-70, 2004 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-15355991

RESUMEN

Co-reconstitution of subunits E and G of the yeast V-ATPase and the alpha and beta subunits of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) resulted in an alpha(3)beta(3)EG hybrid complex showing 53% of the ATPase activity of TF(1). The alpha(3)beta(3)EG oligomer was characterized by electron microscopy. By processing 40,000 single particle projections, averaged two-dimensional projections at 1.2-2.4-nm resolution were obtained showing the hybrid complex in various positions. Difference mapping of top and side views of this complex with projections of the atomic model of the alpha(3)beta(3) subcomplex from TF(1) (Shirakihara, Y., Leslie, A. G., Abrahams, J. P., Walker, J. E., Ueda, T., Sekimoto, Y., Kambara, M., Saika, K., Kagawa, Y., and Yoshida, M. (1997) Structure 5, 825-836) demonstrates that a seventh mass is located inside the shaft of the alpha(3)beta(3) barrel and extends out from the hexamer. Furthermore, difference mapping of the alpha(3)beta(3)EG oligomer with projections of the A(3)B(3)E and A(3)B(3)EC subcomplexes of the V(1) from Caloramator fervidus (Chaban, Y., Ubbink-Kok, T., Keegstra, W., Lolkema, J. S., and Boekema, E. J. (2002) EMBO Rep. 3, 982-987) shows that the mass inside the shaft is made up of subunit E, whereby subunit G was assigned to belong at least in part to the density of the protruding stalk. The formation of an active alpha(3)beta(3)EG hybrid complex indicates that the coupling subunit gamma inside the alpha(3)beta(3) oligomer of F(1) can be effectively replaced by subunit E of the V-ATPase. Our results have also demonstrated that the E and gamma subunits are structurally similar, despite the fact that their genes do not show significant homology.


Asunto(s)
Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón Vacuolares/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Complejos Multienzimáticos , Estructura Secundaria de Proteína , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/ultraestructura , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/ultraestructura
5.
J Biol Chem ; 279(37): 38644-8, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15220347

RESUMEN

In Archaea, bacteria, and eukarya, ATP provides metabolic energy for energy-dependent processes. It is synthesized by enzymes known as A-type or F-type ATP synthase, which are the smallest rotatory engines in nature (Yoshida, M., Muneyuki, E., and Hisabori, T. (2001) Nat. Rev. Mol. Cell. Biol. 2, 669-677; Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2312-2315). Here, we report the first projected structure of an intact A(1)A(0) ATP synthase from Methanococcus jannaschii as determined by electron microscopy and single particle analysis at a resolution of 1.8 nm. The enzyme with an overall length of 25.9 nm is organized in an A(1) headpiece (9.4 x 11.5 nm) and a membrane domain, A(0) (6.4 x 10.6 nm), which are linked by a central stalk with a length of approximately 8 nm. A part of the central stalk is surrounded by a horizontal-situated rodlike structure ("collar"), which interacts with a peripheral stalk extending from the A(0) domain up to the top of the A(1) portion, and a second structure connecting the collar structure with A(1). Superposition of the three-dimensional reconstruction and the solution structure of the A(1) complex from Methanosarcina mazei Gö1 have allowed the projections to be interpreted as the A(1) headpiece, a central and the peripheral stalk, and the integral A(0) domain. Finally, the structural organization of the A(1)A(0) complex is discussed in terms of the structural relationship to the related motors, F(1)F(0) ATP synthase and V(1)V(0) ATPases.


Asunto(s)
Complejos de ATP Sintetasa/química , Methanococcus/enzimología , Adenosina Trifosfato/química , Archaea/enzimología , Centrifugación por Gradiente de Densidad , Electroforesis en Gel de Poliacrilamida , Procesamiento de Imagen Asistido por Computador , Methanococcus/ultraestructura , Microscopía Electrónica , Modelos Biológicos , Análisis Multivariante , Conformación Proteica , Estructura Terciaria de Proteína , ATPasas de Translocación de Protón/metabolismo , Relación Estructura-Actividad , Sacarosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA