Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
C R Biol ; 343(1): 9-21, 2020 Jun 05.
Artículo en Francés | MEDLINE | ID: mdl-32720483

RESUMEN

DNA replication is an extremely complex process, involving thousands of replication forks progressing along chromosomes. These forks are frequently slowed down or stopped by various obstacles, such as secondary DNA structures, chromatin-acting proteins or a lack of nucleotides. This slowing down, known as replicative stress, plays a central role in tumour development. Complex processes, which are not yet fully understood, are set up to respond to this stress. Certain nucleases, such as MRE11 and DNA2, degrade the neo-replicated DNA at the level of blocked forks, allowing the replication to restart. The interferon pathway is a defense mechanism against pathogens that detects the presence of foreign nucleic acids in the cytoplasm and activates the innate immune response. DNA fragments resulting from genomic DNA metabolism (repair, retrotransposition) can diffuse into the cytoplasm and activate this pathway. A pathological manifestation of this process is the Aicardi-Goutières syndrome, a rare disease characterized by chronic inflammation leading to neurodegenerative and developmental problems. In this encephalopathy, it has been suggested that DNA replication may generate cytosolic DNA fragments, but the mechanisms involved have not been characterized. SAMHD1 is frequently mutated in the Aicardi-Goutières syndrome as well as in some cancers, but its role in the etiology of these diseases was largely unknown. We show that cytosolic DNA accumulates in SAMHD1-deficient cells, particularly in the presence of replicative stress, activating the interferon response. SAMHD1 is important for DNA replication under normal conditions and for the processing of stopped forks, independent of its dNTPase activity. In addition, SAMHD1 stimulates the exonuclease activity of MRE11 in vitro. When SAMHD1 is absent, degradation of neosynthesized DNA is inhibited, which prevents activation of the replication checkpoint and leads to failure to restart the replication forks. Resection of the replication forks is performed by an alternative mechanism which releases DNA fragments into the cytosol, activating the interferon response. The results obtained show, for the first time, a direct link between the response to replication stress and the production of interferons. These results have important implications for our understanding of the Aicardi-Goutières syndrome and cancers related to SAMHD1. For example, we have shown that MRE11 and RECQ1 are responsible for the production of DNA fragments that trigger the inflammatory response in cells deficient for SAMHD1. We can therefore imagine that blocking the activity of these enzymes could decrease the production of DNA fragments and, ultimately, the activation of innate immunity in these cells. In addition, the interferon pathway plays an essential role in the therapeutic efficacy of irradiation and certain chemotherapeutic agents such as oxaliplatin. Modulating this response could therefore be of much wider interest in anti-tumour therapy.


La réplication de l'ADN est un processus extrêmement complexe, impliquant des milliers de fourches de réplication progressant le long des chromosomes. Ces fourches sont fréquemment ralenties ou arrêtées par différents obstacles, tels que des structures secondaires de l'ADN, des protéines agissant sur la chromatine ou encore un manque de nucléotides. Ce ralentissement, qualifié de stress réplicatif, joue un rôle central dans le développement tumoral. Des processus complexes, qui ne sont pas encore totalement connus, sont mis en place pour répondre à ce stress. Certaines nucléases, comme MRE11 et DNA2, dégradent l'ADN néorépliqué au niveau des fourches bloquées, ce qui permet le redémarrage des réplisomes. La voie interféron est un mécanisme de défense contre les agents pathogènes qui détecte la présence d'acides nucléiques étrangers dans le cytoplasme et active la réponse immunitaire innée. Des fragments d'ADN issus du métabolisme de l'ADN génomique (réparation, rétrotransposition) peuvent diffuser dans le cytoplasme et activer cette voie. Une manifestation pathologique de ce processus est le syndrome d'Aicardi-Goutières, une maladie rare caractérisée par une inflammation chronique générant des problèmes neurodégénératifs et développementaux. Dans le cadre de cette encéphalopathie, il a été suggéré que la réplication de l'ADN pouvait générer des fragments d'ADN cytosoliques, mais les mécanismes impliqués n'avaient pas été caractérisés. SAMHD1 est fréquemment muté dans le syndrome d'Aicardi-Goutières ainsi que dans certains cancers, mais son rôle dans l'étiologie de ces maladies était jusqu'à présent largement inconnu. Nous montrons que de l'ADN cytosolique s'accumule dans les cellules déficientes pour SAMHD1, particulièrement en présence de stress réplicatif, activant la réponse interféron. Par ailleurs, SAMHD1 est important pour la réplication de l'ADN en conditions normales et pour le processing des fourches arrêtées, indépendamment de son activité dNTPase. De plus, SAMHD1 stimule l'activité exonucléase de MRE11 in vitro. Lorsque SAMHD1 est absent, la dégradation de l'ADN néosynthétisé est inhibée, ce qui empêche l'activation du checkpoint de réplication et entraine un défaut de redémarrage des fourches de réplication. De plus, la résection des fourches de réplication est réalisée par un mécanisme alternatif qui libère des fragments d'ADN dans le cytosol, activant la réponse interféron. Les résultats obtenus montrent, pour la première fois, un lien direct entre la réponse au stress réplicatif et la production d'interférons. Ces résultats ont des conséquences importantes dans notre compréhension du syndrome d'Aicardi Goutières et des cancers liés à SAMHD1. Par exemple, nous avons démontré que MRE11 et RECQ1 sont responsables de la production des fragments d'ADN qui déclenchent la réponse inflammatoire dans les cellules déficientes pour SAMHD1. Nous pouvons donc imaginer que bloquer l'activité de ces enzymes pourrait diminuer la production des fragments d'ADN et, in fine, l'activation de l'immunité innée dans ces cellules. Par ailleurs, la voie interférons joue un rôle essentiel dans l'efficacité thérapeutique de l'irradiation et de certains agents chimiothérapiques comme l'oxaliplatine. Moduler cette réponse pourrait donc avoir un intérêt beaucoup plus large en thérapie anti-tumorale.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/fisiopatología , Interferones/metabolismo , Malformaciones del Sistema Nervioso/fisiopatología , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , ADN , Replicación del ADN , Humanos , RecQ Helicasas/metabolismo
2.
Mol Cell Biol ; 17(10): 6114-21, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9315671

RESUMEN

Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex.


Asunto(s)
Genes Fúngicos/genética , Ribonucleósido Difosfato Reductasa/genética , Ribonucleótido Reductasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Clonación Molecular , Frío , Inhibidores Enzimáticos/farmacología , Dosificación de Gen , Regulación Fúngica de la Expresión Génica/fisiología , Genes Fúngicos/fisiología , Hidroxiurea/farmacología , Metilmetanosulfonato/farmacología , Datos de Secuencia Molecular , Mutágenos/farmacología , Mutación , Fenotipo , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , Ribonucleósido Difosfato Reductasa/antagonistas & inhibidores , Ribonucleótido Reductasas/antagonistas & inhibidores , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Homología de Secuencia de Aminoácido
3.
Mol Cell Biol ; 20(23): 9076-83, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11074005

RESUMEN

In budding yeast, MEC1 and RAD53 are essential for cell growth. Previously we reported that mec1 or rad53 lethality is suppressed by removal of Sml1, a protein that binds to the large subunit of ribonucleotide reductase (Rnr1) and inhibits RNR activity. To understand further the relationship between this suppression and the Sml1-Rnr1 interaction, we randomly mutagenized the SML1 open reading frame. Seven mutations were identified that did not affect protein expression levels but relieved mec1 and rad53 inviability. Interestingly, all seven mutations abolish the Sml1 interaction with Rnr1, suggesting that this interaction causes the lethality observed in mec1 and rad53 strains. The mutant residues all cluster within the 33 C-terminal amino acids of the 104-amino-acid-long Sml1 protein. Four of these residues reside within an alpha-helical structure that was revealed by nuclear magnetic resonance studies. Moreover, deletions encompassing the N-terminal half of Sml1 do not interfere with its RNR inhibitory activity. Finally, the seven sml1 mutations also disrupt the interaction with yeast Rnr3 and human R1, suggesting a conserved binding mechanism between Sml1 and the large subunit of RNR from different species.


Asunto(s)
Proteínas de Ciclo Celular , Inhibidores Enzimáticos , Proteínas Fúngicas/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Ribonucleótido Reductasas/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae , Supresión Genética , Quinasa de Punto de Control 2 , Cromosomas Fúngicos , Análisis Mutacional de ADN , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutación Missense , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Soluciones , Especificidad de la Especie , Factor Trefoil-2 , Técnicas del Sistema de Dos Híbridos
4.
Oncogene ; 36(42): 5808-5818, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-28604743

RESUMEN

The APC/C-Cdh1 ubiquitin-ligase complex targets cell cycle regulators for proteosomal degradation and helps prevent tumor development and accumulation of chromosomal aberrations. Replication stress has been proposed to be the main driver of genomic instability in the absence of Cdh1, but the real contribution of APC/C-Cdh1 to efficient replication, especially in normal cells, remains unclear. Here we show that, in primary MEFs, acute depletion or permanent ablation of Cdh1 slowed down replication fork movement and increased origin activity. Partial inhibition of origin firing does not accelerate replication forks, suggesting that fork progression is intrinsically limited in the absence of Cdh1. Moreover, exogenous supply of nucleotide precursors, or ectopic overexpression of RRM2, the regulatory subunit of Ribonucleotide Reductase, restore replication efficiency, indicating that dNTP availability could be impaired upon Cdh1 loss. Indeed, we found reduced dNTP levels in Cdh1-deficient MEFs. Importantly, DNA breakage is also significantly alleviated by increasing intracellular dNTP pools, strongly suggesting that genomic instability is the result of aberrant replication. These observations highlight the relevance of APC/C-Cdh1 activity during G1 to ensure an adequate supply of dNTPs to the replisome, prevent replication stress and the resulting chromosomal breaks and, ultimately, suppress tumorigenesis.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdh1/fisiología , Roturas del ADN , Replicación del ADN , Desoxirribonucleótidos/metabolismo , Fase G1 , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Inestabilidad Genómica , Masculino , Ratones , Ratones Noqueados , Ribonucleósido Difosfato Reductasa/metabolismo
6.
J Biol Chem ; 275(23): 17747-53, 2000 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-10747958

RESUMEN

Ribonucleotide reductase (RNR) plays a central role in the formation and control of the optimal levels of deoxyribonucleoside triphosphates, which are required for DNA replication and DNA repair processes. Mammalian RNRs are composed of two nonidentical subunits, proteins R1 and R2. The levels of the limiting R2 protein control overall RNR activity during the mammalian cell cycle, being undetectable in G(1) phase and increasing in S phase. We show that in proliferating mammalian cells, the transcription of the R2 gene, once activated in the beginning of S phase, reaches its maximum 6-7 h later and then declines. Surprisingly, DNA damage and replication blocks neither increase nor prolong the R2 promoter activity in S phase. Instead, the cell cycle activity of the mammalian enzyme is controlled by an S phase/DNA damage-specific stabilization of the R2 protein, which is effective until cells pass into mitosis.


Asunto(s)
Ciclo Celular/fisiología , División Celular/fisiología , Daño del ADN , Reparación del ADN , Replicación del ADN , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Células 3T3 , Animales , Afidicolina/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , División Celular/efectos de los fármacos , División Celular/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Fase G1 , Regulación Enzimológica de la Expresión Génica , Hidroxiurea/farmacología , Ratones , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de la radiación , Proteínas Recombinantes/metabolismo , Fase S , Transcripción Genética , Transfección , Rayos Ultravioleta
7.
J Biol Chem ; 274(51): 36679-83, 1999 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-10593972

RESUMEN

Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides; this step is rate-limiting in DNA precursor synthesis. A number of regulatory mechanisms ensure optimal deoxyribonucleotide pools, which are essential for cell viability. The best studied mechanisms are transcriptional regulation of the RNR genes during the cell cycle and in the response to DNA damage, and the allosteric regulation of ribonucleotide reductase by nucleoside triphosphates. Recently, another mode of RNR regulation has been hypothesized in yeast. A novel protein, Sml1, was shown to bind to the Rnr1 protein of the yeast ribonucleotide reductase; this interaction was proposed to inhibit ribonucleotide reductase activity when DNA synthesis is not required (Zhao, X., Muller, E.G.D., and Rothstein, R. (1998) Mol. Cell 2, 329-340). Here, we use highly purified recombinant proteins to directly demonstrate that the Sml1 protein is a strong inhibitor of yeast RNR. The Sml1p specifically binds to the yeast Rnr1p in a 1:1 ratio with a dissociation constant of 0.4 microM. Interestingly, Sml1p also specifically binds to the mouse ribonucleotide reductase R1 protein. However, the inhibition observed in an in vitro mouse ribonucleotide reductase assay is less pronounced than the inhibition in yeast and probably occurs via a different mechanism.


Asunto(s)
Replicación del ADN , Inhibidores Enzimáticos , Proteínas Fúngicas/metabolismo , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Animales , Daño del ADN , ADN de Hongos , Ratones , Saccharomyces cerevisiae , Especificidad por Sustrato
8.
Proc Natl Acad Sci U S A ; 97(6): 2474-9, 2000 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-10716984

RESUMEN

Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an alpha(2)beta(2) form of RNR consisting of two homodimeric subunits, proteins R1 (alpha(2)) and R2 (beta(2)). The R1 protein is the business end of the enzyme containing the active site and the binding sites for allosteric effectors. The R2 protein is a radical storage device containing an iron center-generated tyrosyl free radical. Previous work has identified an RNR protein in yeast, Rnr4p, which is homologous to other R2 proteins but lacks a number of conserved amino acid residues involved in iron binding. Using highly purified recombinant yeast RNR proteins, we demonstrate that the crucial role of Rnr4p (beta') is to fold correctly and stabilize the radical-storing Rnr2p by forming a stable 1:1 Rnr2p/Rnr4p complex. This complex sediments at 5.6 S as a betabeta' heterodimer in a sucrose gradient. In the presence of Rnr1p, both polypeptides of the Rnr2p/Rnr4p heterodimer cosediment at 9.7 S as expected for an alpha(2)betabeta' heterotetramer, where Rnr4p plays an important role in the interaction between the alpha(2) and the betabeta ' subunits. The specific activity of the Rnr2p complexed with Rnr4p is 2,250 nmol deoxycytidine 5'-diphosphate formed per min per mg, whereas the homodimer of Rnr2p shows no activity. This difference in activity may be a consequence of the different conformations of the inactive homodimeric Rnr2p and the active Rnr4p-bound form, as shown by CD spectroscopy. Taken together, our results show that the Rnr2p/Rnr4p heterodimer is the active form of the yeast RNR small subunit.


Asunto(s)
Proteínas Fúngicas/química , Hierro/química , Ribonucleótido Reductasas/química , Western Blotting , Centrifugación por Gradiente de Densidad , Dicroismo Circular , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/metabolismo , Radicales Libres/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Isoformas de Proteínas , Proteínas Recombinantes/química , Ribonucleótido Reductasas/aislamiento & purificación , Temperatura , Factores de Tiempo
9.
Proc Natl Acad Sci U S A ; 98(11): 6412-6, 2001 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-11353848

RESUMEN

The drugs in clinical use against African sleeping sickness are toxic, costly, or inefficient. We show that Trypanosoma brucei, which causes this disease, has very low levels of CTP, which are due to a limited capacity for de novo synthesis and the lack of salvage pathways. The CTP synthetase inhibitors 6-diazo-5-oxo-l-norleucine (DON) and alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin) reduced the parasite CTP levels even further and inhibited trypanosome proliferation in vitro and in T. brucei-infected mice. In mammalian cells, DON mainly inhibits de novo purine biosynthesis, a pathway lacking in trypanosomes. We could rescue DON-treated human and mouse fibroblasts by the addition of the purine base hypoxanthine to the growth medium. For treatment of sleeping sickness, we propose the use of CTP synthetase inhibitors alone or in combination with appropriate nucleosides or bases.


Asunto(s)
Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Diazooxonorleucina/farmacología , Inhibidores Enzimáticos/farmacología , Isoxazoles/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Citidina/farmacología , Citidina Trifosfato/biosíntesis , Citidina Trifosfato/metabolismo , Diazooxonorleucina/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Fibroblastos/citología , Guanina/farmacología , Guanosina Trifosfato/metabolismo , Humanos , Hipoxantinas/farmacología , Líquido Intracelular , Isoxazoles/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/crecimiento & desarrollo , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/parasitología , Uridina Trifosfato/metabolismo
10.
Eur J Biochem ; 268(16): 4527-36, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11502214

RESUMEN

Unregulated transcription of protein-encoding genes in vitro is dependent on 12-subunit core RNA polymerase II and five general transcription factors; TATA binding protein (TBP), transcription factor (TF)IIB, TFIIE, TFIIF, and TFIIH. Here we describe cloning of the mouse cDNAs encoding TFIIB and the small and large TFIIE and TFIIF subunits. The cDNAs have been used to express the corresponding proteins in recombinant form in Escherichia coli and in Sf21 insect cells, and all proteins have been purified to > 90% homogeneity. We have also purified a recombinant His6-tagged mouse TBP to near homogeneity and show that it is active in both a reconstituted mouse in vitro transcription system and a TBP-dependent in vitro transcription system from Saccharomyces cerevisiae. The more complex general transcription factors, TFIIH and RNA polymerase II, were purified more than 1000-fold and to near homogeneity, respectively, from tissue cultured mouse cells. When combined, the purified factors were sufficient to initiate transcription from different promoters in vitro. Functional studies of the S-phase-specific mouse ribonucleotide reductase R2 promoter using both the highly purified system described here (a mouse cell nuclear extract in vitro transcription system) and in vivo R2-promoter reporter gene assays together identify an NF-Y interacting promoter proximal CCAAT-box as being essential for high-level expression from the R2 promoter.


Asunto(s)
Proteínas de Unión al ADN/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Factores de Transcripción TFII , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Clonación Molecular , Ratones , Regiones Promotoras Genéticas , Proteínas Recombinantes/aislamiento & purificación , Ribonucleótido Reductasas/genética , Proteína de Unión a TATA-Box , Factor de Transcripción TFIIB , Factor de Transcripción TFIIH
11.
EMBO J ; 20(13): 3544-53, 2001 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-11432841

RESUMEN

The evolutionarily conserved protein kinases Mec1 and Rad53 are required for checkpoint response and growth. Here we show that their role in growth is to remove the ribonucleotide reductase inhibitor Sml1 to ensure DNA replication. Sml1 protein levels fluctuate during the cell cycle, being lowest during S phase. The disappearance of Sml1 protein in S phase is due to post-transcriptional regulation and is associated with protein phosphorylation. Both phosphorylation and diminution of Sml1 require MEC1 and RAD53. More over, failure to remove Sml1 in mec1 and rad53 mutants results in incomplete DNA replication, defective mitochondrial DNA propagation, decreased dNTP levels and cell death. Interestingly, similar regulation of Sml1 also occurs after DNA damage. In this case, the regulation requires MEC1 and RAD53, as well as other checkpoint genes. Therefore, Sml1 is a new target of the DNA damage checkpoint and its removal is a conserved function of Mec1 and Rad53 during growth and after damage.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN , Reparación del ADN , Replicación del ADN , Inhibidores Enzimáticos , Proteínas Fúngicas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Ribonucleótido Reductasas/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Quinasa de Punto de Control 2 , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , ADN de Hongos/efectos de los fármacos , ADN de Hongos/genética , ADN de Hongos/efectos de la radiación , Rayos gamma , Genotipo , Hidroxiurea/farmacología , Péptidos y Proteínas de Señalización Intracelular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA