Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(45): e2210618119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322759

RESUMEN

Alterations of the tumor suppressor TP53, one of the most common events in cancer, alone are insufficient for tumor development but serve as drivers of transformation. We sought to identify cooperating events through genomic analyses of a somatic Trp53R245W mouse model (equivalent to the TP53R248W hot spot mutation in human cancers) that recapitulates metastatic breast-cancer development. We identified cooperating lesions similar to those found in human breast cancers. Moreover, we identified activation of the Pi3k/Akt/mTOR pathway in most tumors via mutations in Pten, Erbb2, Kras, and/or a recurrent Pip5k1c mutation that stabilizes the Pip5k1c protein and activates Pi3k/Akt/mTOR signaling. Another PIP5K1C family member, PIP5K1A, is coamplified with PI4KB in 18% of human breast cancer patients; both encode kinases that are responsible for production of the PI3K substrate, phosphatidylinositol 4,5-bisphosphate. Thus, the TP53R248W mutation and PI3K/AKT/mTOR signaling are major cooperative events driving breast-cancer development. Additionally, a combination of two US Food and Drug Administration (FDA)-approved drugs, tigecycline and metformin, which target oxidative phosphorylation downstream of PI3K signaling, inhibited tumor cell growth and may be repurposed for breast-cancer treatment. These findings advance our understanding of how mutant p53 drives breast-tumor development and pinpoint the importance of PI3K/AKT/mTOR signaling, expanding combination therapies for breast-cancer treatment.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
2.
Blood ; 129(14): 1958-1968, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28143883

RESUMEN

FZR1 (fizzy-related protein homolog; also known as CDH1 [cell division cycle 20 related 1]) functions in the cell cycle as a specific activator of anaphase-promoting complex or cyclosome ubiquitin ligase, regulating late mitosis, G1 phase, and activation of the G2-M checkpoint. FZR1 has been implicated as both a tumor suppressor and oncoprotein, and its precise contribution to carcinogenesis remains unclear. Here, we examined the role of FZR1 in tumorigenesis and cancer therapy by analyzing tumor models and patient specimens. In an Fzr1 gene-trap mouse model of B-cell acute lymphoblastic leukemia (B-ALL), mice with Fzr1-deficient B-ALL survived longer than those with Fzr1-intact disease, and sensitivity of Fzr1-deficient B-ALL cells to DNA damage appeared increased. Consistently, conditional knockdown of FZR1 sensitized human B-ALL cell lines to DNA damage-induced cell death. Moreover, multivariate analyses of reverse-phase protein array of B-ALL specimens from newly diagnosed B-ALL patients determined that a low FZR1 protein expression level was an independent predictor of a longer remission duration. The clinical benefit of a low FZR1 expression level at diagnosis was no longer apparent in patients with relapsed B-ALL. Consistent with this result, secondary and tertiary mouse recipients of Fzr1-deficient B-ALL cells developed more progressive and radiation-resistant disease than those receiving Fzr1-intact B-ALL cells, indicating that prolonged inactivation of Fzr1 promotes the development of resistant clones. Our results suggest that reduction of FZR1 increases therapeutic sensitivity of B-ALL and that transient rather than tonic inhibition of FZR1 may be a therapeutic strategy.


Asunto(s)
Proteínas Cdh1 , Daño del ADN , Regulación Leucémica de la Expresión Génica , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Animales , Proteínas Cdh1/biosíntesis , Proteínas Cdh1/genética , Muerte Celular , Humanos , Ratones , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia
3.
Cancer Sci ; 106(12): 1705-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26450753

RESUMEN

Curing patients with acute myeloid leukemia (AML) remains a therapeutic challenge. The polycomb complex protein B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is required for the self-renewal and maintenance of leukemia stem cells. We investigated the prognostic significance of BMI-1 in AML and the effects of a novel small molecule selective inhibitor of BMI-1, PTC-209. BMI-1 protein expression was determined in 511 newly diagnosed AML patients together with 207 other proteins using reverse-phase protein array technology. Patients with unfavorable cytogenetics according to Southwest Oncology Group criteria had higher levels of BMI-1 compared to those with favorable (P = 0.0006) or intermediate cytogenetics (P = 0.0061), and patients with higher levels of BMI-1 had worse overall survival (55.3 weeks vs. 42.8 weeks, P = 0.046). Treatment with PTC-209 reduced protein level of BMI-1 and its downstream target mono-ubiquitinated histone H2A and triggered several molecular events consistent with the induction of apoptosis, this is, loss of mitochondrial membrane potential, caspase-3 cleavage, BAX activation, and phosphatidylserine externalization. PTC-209 induced apoptosis in patient-derived CD34(+)CD38(low/-) AML cells and, less prominently, in CD34(-) differentiated AML cells. BMI-1 reduction by PTC-209 directly correlated with apoptosis induction in CD34(+) primary AML cells (r = 0.71, P = 0.022). However, basal BMI-1 expression was not a determinant of AML sensitivity. BMI-1 inhibition, which targets a primitive AML cell population, might offer a novel therapeutic strategy for AML.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Heterocíclicos con 2 Anillos/farmacología , Leucemia Mieloide Aguda/patología , Complejo Represivo Polycomb 1/biosíntesis , Tiazoles/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Citometría de Flujo , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidad , Pronóstico , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección
4.
Cancer Res ; 83(14): 2297-2311, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37205631

RESUMEN

Missense mutations in the DNA binding domain of p53 are characterized as structural or contact mutations based on their effect on the conformation of the protein. These mutations show gain-of-function (GOF) activities, such as promoting increased metastatic incidence compared with p53 loss, often mediated by the interaction of mutant p53 with a set of transcription factors. These interactions are largely context specific. To understand the mechanisms by which p53 DNA binding domain mutations drive osteosarcoma progression, we created mouse models, in which either the p53 structural mutant p53R172H or the contact mutant p53R245W are expressed specifically in osteoblasts, yielding osteosarcoma tumor development. Survival significantly decreased and metastatic incidence increased in mice expressing p53 mutants compared with p53-null mice, suggesting GOF. RNA sequencing of primary osteosarcomas revealed vastly different gene expression profiles between tumors expressing the missense mutants and p53-null tumors. Further, p53R172H and p53R245W each regulated unique transcriptomes and pathways through interactions with a distinct repertoire of transcription factors. Validation assays showed that p53R245W, but not p53R172H, interacts with KLF15 to drive migration and invasion in osteosarcoma cell lines and promotes metastasis in allogeneic transplantation models. In addition, analyses of p53R248W chromatin immunoprecipitation peaks showed enrichment of KLF15 motifs in human osteoblasts. Taken together, these data identify unique mechanisms of action of the structural and contact mutants of p53. SIGNIFICANCE: The p53 DNA binding domain contact mutant p53R245W, but not the structural mutant p53R172H, interacts with KLF15 to drive metastasis in somatic osteosarcoma, providing a potential vulnerability in tumors expressing p53R245W mutation.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Ratones , Humanos , Animales , Proteína p53 Supresora de Tumor/genética , Osteosarcoma/patología , Mutación , Ratones Noqueados , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Factores de Transcripción/metabolismo , ADN , Línea Celular Tumoral
5.
Biochem Biophys Rep ; 29: 101206, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35059511

RESUMEN

Dead-End (DND1) is an RNA-binding protein involved in translational regulation. Defects in DND1 gene causes germ cell tumors and sterility in rodents. Experimental studies with human somatic cancer cells indicate that DND1 has anti-proliferative and pro-apoptotic function in some while oncogenic function in other cells. We examined The Cancer Genome Atlas data for gene alterations and gene expression changes in DND1 in a variety of human cancers. We found that DND1 is amplified, deleted or mutated in multiple human cancers. In different cancers, DND1 alteration correlates with increased diagnosis age of patients, shift in tumor spectrum or change of tumor sites and in some cases is significantly associated with worse survival for cancer patients. For 15 cancers, we retrieved expression data of thousands of genes that co-expressed with DND1. We found that these cancers contain different percentage of genes that are positively or negatively co-expressed with DND1. Ingenuity Pathway Analysis was performed to explore the biological implications of these genes. More than 10 canonical pathways were identified and each cancer type exhibits unique pathway profiles. Comparison analysis across all 15 cancer types showed that some cancers exhibit strikingly similar profiles of DND1-correlated signaling pathway activation or suppression. Our data reinforce the notion that the biological role of DND1 is cell-type specific and suggest that DND1 may play opposing role by exerting anti-proliferative effects in some cancer cells while being pro-proliferative in others. Our study provides valuable insights to direct experimental investigations of DND1 function in somatic cancers.

6.
Cancer Res ; 82(10): 1926-1936, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35320355

RESUMEN

The majority of TP53 missense mutations identified in cancer patients are in the DNA-binding domain and are characterized as either structural or contact mutations. These missense mutations exhibit inhibitory effects on wild-type p53 activity. More importantly, these mutations also demonstrate gain-of-function (GOF) activities characterized by increased metastasis, poor prognosis, and drug resistance. To better understand the activities by which TP53 mutations, identified in Li-Fraumeni syndrome, contribute to tumorigenesis, we generated mice harboring a novel germline Trp53R245W allele (contact mutation) and compared them with existing models with Trp53R172H (structural mutation) and Trp53R270H (contact mutation) alleles. Thymocytes from heterozygous mice showed that all three hotspot mutations exhibited similar inhibitory effects on wild-type p53 transcription in vivo, and tumors from these mice had similar levels of loss of heterozygosity. However, the overall survival of Trp53R245W/+ and Trp53R270H/+ mice, but not Trp53R172H/+ mice, was significantly shorter than that of Trp53+/- mice, providing strong evidence for p53-mutant-specific GOF contributions to tumor development. Furthermore, Trp53R245W/+ and Trp53R270H/+ mice had more osteosarcoma metastases than Trp53R172H/+ mice, suggesting that these two contact mutants have stronger GOF in driving osteosarcoma metastasis. Transcriptomic analyses using RNA sequencing data from Trp53R172H/+, Trp53R245W/+, and Trp53R270H/+ primary osteosarcomas in comparison with Trp53+/- indicated that GOF of the three mutants was mediated by distinct pathways. Thus, both the inhibitory effect of mutant over wild-type p53 and GOF activities of mutant p53 contributed to tumorigenesis in vivo. Targeting p53 mutant-specific pathways may be important for therapeutic outcomes in osteosarcoma. SIGNIFICANCE: p53 hotspot mutants inhibit wild-type p53 similarly but differ in their GOF activities, with stronger tumor-promoting activity in contact mutants and distinct protein partners of each mutant driving tumorigenesis and metastasis.


Asunto(s)
Mutación con Ganancia de Función , Osteosarcoma , Proteína p53 Supresora de Tumor , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Carcinogénesis/genética , Línea Celular Tumoral , Transformación Celular Neoplásica , Ratones , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Leukemia ; 35(9): 2469-2481, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34127794

RESUMEN

Eukaryotic initiation factor 4A (eIF4A), the enzymatic core of the eIF4F complex essential for translation initiation, plays a key role in the oncogenic reprogramming of protein synthesis, and thus is a putative therapeutic target in cancer. As important component of its anticancer activity, inhibition of translation initiation can alleviate oncogenic activation of HSF1, a stress-inducible transcription factor that enables cancer cell growth and survival. Here, we show that primary acute myeloid leukemia (AML) cells exhibit the highest transcript levels of eIF4A1 compared to other cancer types. eIF4A inhibition by the potent and specific compound rohinitib (RHT) inactivated HSF1 in these cells, and exerted pronounced in vitro and in vivo anti-leukemia effects against progenitor and leukemia-initiating cells, especially those with FLT3-internal tandem duplication (ITD). In addition to its own anti-leukemic activity, genetic knockdown of HSF1 also sensitized FLT3-mutant AML cells to clinical FLT3 inhibitors, and this synergy was conserved in FLT3 double-mutant cells carrying both ITD and tyrosine kinase domain mutations. Consistently, the combination of RHT and FLT3 inhibitors was highly synergistic in primary FLT3-mutated AML cells. Our results provide a novel therapeutic rationale for co-targeting eIF4A and FLT3 to address the clinical challenge of treating FLT3-mutant AML.


Asunto(s)
Antineoplásicos/farmacología , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Factores de Transcripción del Choque Térmico/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Humanos , Leucemia Mieloide Aguda/patología , Terapia Molecular Dirigida
8.
Cancer Res ; 78(10): 2721-2731, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29490944

RESUMEN

Early clinical trials using murine double minute 2 (MDM2) inhibitors demonstrated proof-of-concept of p53-induced apoptosis by MDM2 inhibition in cancer cells; however, not all wild-type TP53 tumors are sensitive to MDM2 inhibition. Therefore, more potent inhibitors and biomarkers predictive of tumor sensitivity are needed. The novel MDM2 inhibitor DS-3032b is 10-fold more potent than the first-generation inhibitor nutlin-3a. TP53 mutations were predictive of resistance to DS-3032b, and allele frequencies of TP53 mutations were negatively correlated with sensitivity to DS-3032b. However, sensitivity to DS-3032b of TP53 wild-type tumors varied greatly. We thus used two methods to create predictive gene signatures. First, by comparing sensitivity to MDM2 inhibition with basal mRNA expression profiles in 240 cancer cell lines, a 175-gene signature was defined and validated in patient-derived tumor xenograft models and ex vivo human acute myeloid leukemia (AML) cells. Second, an AML-specific 1,532-gene signature was defined by performing random forest analysis with cross-validation using gene expression profiles of 41 primary AML samples. The combination of TP53 mutation status with the two gene signatures provided the best positive predictive values (81% and 82%, compared with 62% for TP53 mutation status alone). In addition, the top-ranked 50 genes selected from the AML-specific 1,532-gene signature conserved high predictive performance, suggesting that a more feasible size of gene signature can be generated through this method for clinical implementation. Our model is being tested in ongoing clinical trials of MDM2 inhibitors.Significance: This study demonstrates that gene expression profiling combined with TP53 mutational status predicts antitumor effects of MDM2 inhibitors in vitro and in vivoCancer Res; 78(10); 2721-31. ©2018 AACR.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Ciclohexanos/farmacología , Femenino , Perfilación de la Expresión Génica , Humanos , Imidazoles/farmacología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Desnudos , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
9.
Sci Signal ; 9(415): ra17, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26884599

RESUMEN

The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Apoptosis/efectos de los fármacos , Daño del ADN , Neoplasias Hematológicas/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Linfoma de Células del Manto/tratamiento farmacológico , Animales , Línea Celular Tumoral , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Imidazoles , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Ratones , Piridinas , Pirimidinas
10.
PLoS One ; 10(9): e0138377, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26375587

RESUMEN

BH3 profiling measures the propensity of transformed cells to undergo intrinsic apoptosis and is determined by exposing cells to BH3-mimicking peptides. We hypothesized that basal levels of prosurvival BCL-2 family proteins may modulate the predictive power of BH3 profiling and termed it mitochondrial profiling. We investigated the correlation between cell sensitivity to apoptogenic agents and mitochondrial profiling, using a panel of acute myeloid leukemias induced to undergo apoptosis by exposure to cytarabine, the BH3 mimetic ABT-199, the MDM2 inhibitor Nutlin-3a, or the CRM1 inhibitor KPT-330. We found that the apoptogenic efficacies of ABT-199 and cytarabine correlated well with BH3 profiling reflecting BCL2, but not BCL-XL or MCL-1 dependence. Baseline BCL-2 protein expression analysis increased the ability of BH3 profiling to predict resistance mediated by MCL-1. By utilizing engineered cells with overexpression or knockdown of BCL-2 family proteins, Ara-C was found to be independent, while ABT-199 was dependent on BCL-XL. BCL-2 and BCL-XL overexpression mediated resistance to KPT-330 which was not reflected in the BH3 profiling assay, or in baseline BCL-2 protein levels. In conclusion, mitochondrial profiling, the combination of BH3 profiling and prosurvival BCL-2 family protein analysis, represents an improved approach to predict efficacy of diverse agents in AML and may have utility in the design of more effective drug combinations.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Mitocondrias/metabolismo , Western Blotting , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA