Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233448

RESUMEN

In recent decades, many studies on the treatment and prevention of pancreatic cancer have been conducted. However, pancreatic cancer remains incurable, with a high mortality rate. Although mouse models have been widely used for preclinical pancreatic cancer research, these models have many differences from humans. Therefore, large animals may be more useful for the investigation of pancreatic cancer. Pigs have recently emerged as a new model of pancreatic cancer due to their similarities to humans, but no pig pancreatic cancer cell lines have been established for use in drug screening or analysis of tumor biology. Here, we established and characterized an immortalized miniature pig pancreatic cell line derived from primary pancreatic cells and pancreatic cancer-like cells expressing K-rasG12D regulated by the human PTF1A promoter. Using this immortalized cell line, we analyzed the gene expression and phenotypes associated with cancer cell characteristics. Notably, we found that acinar-to-ductal transition was caused by K-rasG12D in the cell line constructed from acinar cells. This may constitute a good research model for the analysis of acinar-to-ductal metaplasia in human pancreatic cancer.


Asunto(s)
Páncreas/metabolismo , Neoplasias Pancreáticas/genética , Lesiones Precancerosas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Páncreas/patología , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Transducción de Señal/genética , Porcinos , Porcinos Enanos
2.
Biosci Biotechnol Biochem ; 83(3): 409-416, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30475154

RESUMEN

Microglial activation is known to be an important event during innate immunity, but microglial inflammation is also thought to play a role in the etiology of neurodegenerative diseases. Recently, it was reported that autophagy could influence inflammation and activation of microglia. However, little is known about the regulation of autophagy during microglial activation. In this study, we demonstrated that mitochondrial fission-induced ROS can promote autophagy in microglia. Following LPS-induced autophagy, GFP-LC3 puncta were increased, and this was suppressed by inhibiting mitochondrial fission and mitochondrial ROS. Interestingly, inhibition of mitochondrial fission and mitochondrial ROS also resulted in decreased p62 expression, but Beclin1 and LC3B were unaffected. Taken together, these results indicate that ROS induction due to increased LPS-stimulated mitochondrial fission triggers p62 mediated autophagy in microglial cells. Our findings provide the first important clues towards understanding the correlation between mitochondrial ROS and autophagy. Abbreviations: Drp1; Dynamin related protein 1, LPS; Lipopolysaccharide, ROS; Reactive Oxygen Species, GFP; Green Fluorescent Protein, CNS; Central Nervous System, AD; Alzheimer's Disease, PD; Parkinson's Disease, ALIS; Aggresome-like induced structures, iNOS; inducible nitric oxide synthase, Cox-2; Cyclooxygenase-2, MAPK; Mitogen-activated protein kinase; SODs; Superoxide dismutase, GPXs; Glutathione Peroxidase, Prxs; Peroxiredoxins.


Asunto(s)
Autofagia/efectos de los fármacos , Dinaminas/metabolismo , Lipopolisacáridos/farmacología , Microglía/citología , Dinámicas Mitocondriales/efectos de los fármacos , Proteína Sequestosoma-1/metabolismo , Animales , Línea Celular , Ratones , Microglía/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
3.
Nutr Neurosci ; 21(7): 520-528, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28448247

RESUMEN

Glutamate-induced neurotoxicity is related to excessive oxidative stress accumulation and results in the increase of neuronal cell death. In addition, glutamate has been reported to lead to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.It is well known that Fraxinus rhynchophylla contains a significant level of oleuropein (Ole), which exerts various pharmacological effects. However, the mechanism of neuroprotective effects of Ole is still poorly defined. In this study, we aimed to investigate whether Ole prevents glutamate-induced toxicity in HT-22 hippocampal neuronal cells. The exposure of the glutamate treatment caused neuronal cell death through an alteration of Bax/Bcl-2 expression and translocation of mitochondrial apoptosis-inducing factor (AIF) to the cytoplasm of HT-22 cells. In addition, glutamate induced an increase in dephosphorylation of dynamin-related protein 1 (Drp1), mitochondrial fragmentation, and mitochondrial dysfunction. The pretreatment of Ole decreased Bax expression, increased Bcl-2 expression, and inhibited the translocation of mitochondrial AIF to the cytoplasm. Furthermore, Ole amended a glutamate-induced mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria, regulating the phosphorylation of Drp1 at amino acid residue serine 637. In conclusion, our results show that Ole has a preventive effect against glutamate-induced toxicity in HT-22 hippocampal neuronal cells. Therefore, these data imply that Ole may be an efficient approach for the treatment of neurodegenerative diseases.


Asunto(s)
Muerte Celular/efectos de los fármacos , Fraxinus/química , Iridoides/farmacología , Enfermedades Mitocondriales/tratamiento farmacológico , Neuronas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Dinaminas/genética , Dinaminas/metabolismo , Regulación de la Expresión Génica , Ácido Glutámico , Hipocampo/citología , Glucósidos Iridoides , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/citología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
4.
Biochem J ; 473(17): 2603-10, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27334111

RESUMEN

XBP1 (X-box-binding protein 1) is activated in cancer and has a pivotal role in tumorigenesis and progression of human cancer. In particular, the XBP1 transcriptional regulatory network is well known to drive cancer development, but little is known about whether the stability of XBP1 is regulated and, if so, what controls the stability of XBP1. In the present study we show that PIN1 prolyl isomerase interacts with the active form of XBP1 (XBP1s) in a phosphorylation-dependent manner and promotes XBP1s-induced cell proliferation and transformation through the regulation of XBP1 stability. By contrast, depletion of Pin1 in cancer cells reduced XBP1s expression, which subsequently inhibits cell proliferation and transformation. Interestingly, XBP1s activates multiple oncogenic pathways including NF-κB (nuclear factor κB), AP1 (activator protein 1) and Myc, and down-regulates PIN1 transcription via a negative-feedback mechanism through p53 induction. Ultimately, reciprocal regulation of Pin1 and XBP1s is associated with the activation of oncogenic pathways, and the relationship of PIN1 and XBP1 may be an attractive target for novel therapy in cancers.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Proteína 1 de Unión a la X-Box/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Neoplasias/patología , Fosforilación
5.
Pharmacology ; 100(3-4): 153-160, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28641287

RESUMEN

Chrysophanic acid, or chrysophanol, is an anthraquinone found in Rheum palmatum, which was used in the preparation of oriental medicine in ancient China. The hippocampus plays a major role in controlling the activities of the short- and long-term memory. It is one of the major regions affected by excessive cell death in Alzheimer's disease. Therefore, neuronal cell-death modulation in the hippocampus is important for maintaining neuronal function. We investigated chrysophanol's effects on glutamate-induced hippocampal neuronal cell death. Chrysophanol reduced glutamate-induced cell death via suppression of proapoptotic factors and reactive oxygen species generation. Furthermore, it downregulated glutamate-induced mitochondrial fission by inhibiting dynamin-related protein 1 (Drp1) dephosphorylation. Thus, chrysophanol suppressed hippocampal neuronal cell death via inhibition of Drp1-dependent mitochondrial fission, and can be used as a therapeutic agent for treating neuronal cell death-mediated neurodegenerative diseases.


Asunto(s)
Antraquinonas/farmacología , Muerte Celular/efectos de los fármacos , Dinaminas/antagonistas & inhibidores , Dinámicas Mitocondriales/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Línea Celular , Ácido Glutámico , Hipocampo/citología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
6.
Immunopharmacol Immunotoxicol ; 39(5): 268-275, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28703078

RESUMEN

OBJECTIVES: Chrysophanol, also called chrysophanic acid, is a natural anthraquinone compound found in Rheum palmatum. R. palmatum has been used in oriental medicine in ancient East Asia. Microglial cells represent not only the forefront immune defense in the central nervous system but also the most reactive sensors to various threats. However, activated microglia can exert neurotoxic effects via excessive production of cytotoxic molecules and proinflammatory cytokines. Therefore, modulation of microglial cell activation is important for maintaining neuronal function. MATERIALS AND METHODS: Pretreatment of chrysophanol in BV-2 murein microglial cells was carried out for 1 hour, followed by stimulation with 1 µg/mL LPS. Level of proteins and RNAs were detected by western blotting and Reverse Transcriptase PCR. DsRed2-Mito-expressing cells were used for detecting mitochondrial morphology. RESULTS: In this study, we determined the effects of chrysophanol on lipopolysaccharide (LPS)-induced microglial activation. Chrysophanol inhibited the LPS-induced production of proinflammatory mediators and cytokines via suppression of mitogen-activated protein kinase/nuclear factor kappa-B activation and reactive oxygen species generation. In addition, chrysophanol downregulated LPS-induced mitochondrial fission by diminishing dynamin-related protein 1 (Drp1) dephosphorylation. Taken together, chrysophanol suppressed the proinflammatory response of activated microglia via inhibition of Drp1-dependent mitochondrial fission. CONCLUSION: Our findings can provide the basis for the use of chrysophanol in microglial inflammatory response-mediated neurodegenerative diseases. Furthermore, our study can contribute to the production of new drugs for inflammatory response-mediated neurodegenerative diseases by purification of chrysophanol.


Asunto(s)
Antraquinonas/farmacología , Dinaminas/metabolismo , Microglía/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Animales , Antraquinonas/química , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Ratones , Microglía/patología , Rheum/química
7.
J Biol Res (Thessalon) ; 28(1): 22, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34814951

RESUMEN

BACKGROUND: Peroxiredoxins (Prxs) are antioxidant enzymes that protect cells from oxidative stress induced by several factors. They regulate several signaling pathways, such as metabolism, immune response, and intracellular reactive oxygen species (ROS) homeostasis. Epithelial-mesenchymal transition (EMT) is a transforming process that induces the loss of epithelial features of cancer cells and the gain of the mesenchymal phenotype. The EMT promotes metastasis and cancer cell progression mediated by several pathways, such as mitogen-activated protein kinases (MAPKs) and epigenetic regulators. METHODS: We used Prx6 overexpressed and downregulated HCT116 cells to study the mechanism between Prx6 and colon cancer. The expression of Prx6, GAPDH, Snail, Twist1, E-cadherin, Vimentin, N-cadherin, ERK, p-ERK, p38, p-p38, JNK, and p-JNK were detected by Western blotting. Additionally, an animal study for xenograft assay was conducted to explore the function of Prx6 on tumorigenesis. Cell proliferation and migration were determined by IncuCyte Cell Proliferation and colony formation assays. RESULTS: We confirmed that the expression of Prx6 and EMT signaling highly occurs in HCT116 compared with that in other colon cancer cell lines. Prx6 regulates the EMT signaling pathway by modulating EMT-related transcriptional repressors and mesenchymal genes in HCT116 colon cancer cells. Under the Prx6-overexpressed condition, HCT116 cells proliferation increased significantly. Moreover, the HCT116 cells proliferation decreased in the siPrx6-treated cells. Eleven days after HCT116 cell injection, Prx6 was overexpressed in the HCT116-injected mice, and the tumor volume increased significantly compared with that of the control mice. Furthermore, Prx6 regulates EMT signaling through p38 phosphorylation in colon cancer cells. CONCLUSION: We suggested that Prx6 regulates EMT signaling pathway through p38 phosphorylation modulation in HCT116 colon cancer cells.

8.
Aging (Albany NY) ; 11(17): 7242-7256, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31503005

RESUMEN

Among the many factors that promote cellular senescence, reactive oxygen species (ROS) are a focus of intense research because of their critical role in accelerating cellular senescence and initiating senescence-related diseases that can be fatal. Therefore, maintaining the proper balance of ROS in cells is a key method to alleviate senescence. Recent studies have found that isocitrate dehydrogenase 2 (IDH2), a critical enzyme of the tricarboxylic acid cycle, participates in ROS generation and in cellular dysfunction that is induced by excessive levels of ROS. Loss of IDH2 induces mitochondrial dysfunction that promotes excessive ROS generation and the development of several diseases. The results of this study suggest that Idh2 plays an important role in cellular senescence. Idh2 deficiency resulted in senescence-associated phenotypes and increased levels of senescence marker proteins in mouse embryonic fibroblasts and tissues. Furthermore, excessive ROS were generated in Idh2-deficient conditions, promoting cellular senescence by inducing cell cycle arrest through cyclin-dependent kinase 2. These results indicate that loss of Idh2 is a critical factor in regulating cellular senescence. Taken together, our findings contribute to the field of senescence research and suggest that IDH2 is a potential target of future anti-senescence studies.


Asunto(s)
Senescencia Celular , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fibroblastos/fisiología , Isocitrato Deshidrogenasa/deficiencia , Animales , Embrión de Mamíferos , Ratones , Ratones Noqueados , Células 3T3 NIH , Especies Reactivas de Oxígeno/metabolismo
9.
Oncogenesis ; 8(3): 12, 2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30783083

RESUMEN

In cancer, activation of X-box binding protein (XBP1) has a critical role in tumorigenesis and cancer progression. Transcriptional regulatory mechanism of XBP1 in cancer development has been well known, however, regulation of ubiquitination and degradation of XBP1 has not been elucidated yet. Here we show that Fbw7, a substrate recognition component of the SKP1-Cullin-F-box-type E3 ligase, interacts with XBP1 in a phosphorylation-dependent manner, and facilitates XBP1 ubiquitination and protein degradation. Moreover, Fbw7 inhibits oncogenic pathways including NF-κB, AP1, and Myc induced by XBP1. Interestingly, XBP1 negatively regulates transcription of Fbw7 via a feedback mechanism through NF-κB/E2F-1 axis signaling pathway, suggesting that overexpression of XBP1s may contribute to low level of Fbw7 expression in human cancers. Therefore, a negative feedback loop between Fbw7 and XBP1 contributes to the regulation of tumor development and can be an attractive target for novel therapy in cancers.

10.
Inflammation ; 41(5): 1965-1973, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29987482

RESUMEN

In various neuronal diseases, the activation of microglia contributes to the production of excessive neurotoxic factors, such as pro-inflammatory mediators. In particular, the overproduction of pro-inflammatory cytokines and nitric oxide (NO) has critical effects on the development of neurodegenerative diseases and gliomas in the brain. Recent studies have suggested that isocitrate dehydrogenase 2 (IDH2) plays a key role in inducing gliomas and neurodegeneration. IDH2 dysfunction has been linked to various cancers and neurodegenerative diseases associated with uncontrolled inflammatory responses, such as the excessive generation of pro-inflammatory cytokines. In this study, we demonstrate that IDH2 contributes to the regulation of pro-inflammatory mediators in microglia. The downregulation of IDH2 decreased the lipopolysaccharide (LPS)-induced pro-inflammatory response in BV-2 and primary microglial cells. Furthermore, IDH2 deficiency downregulated pro-inflammatory mediators via modulation of the ERK and NF-κB pathways. These results indicate that IDH2 is a potential target for the regulation of pro-inflammatory responses in LPS-activated microglial cells. Our findings also provide a basis for the development of new therapies for pro-inflammatory responses in dysfunction-associated neuronal diseases.


Asunto(s)
Mediadores de Inflamación/metabolismo , Isocitrato Deshidrogenasa/deficiencia , Sistema de Señalización de MAP Quinasas , Microglía/patología , FN-kappa B/metabolismo , Animales , Células Cultivadas , Lipopolisacáridos , Ratones , Microglía/metabolismo
11.
Int J Biochem Cell Biol ; 99: 80-90, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29605633

RESUMEN

Insulin signaling is essential for regulating glucose homeostasis. Numerous studies have demonstrated that reactive oxygen species (ROS) affect insulin signaling, and low ROS levels can act as a signal to regulate cellular function. Peroxiredoxins (Prxs) are highly abundant and widely expressed antioxidant enzymes. However, it is unclear whether antioxidant enzymes, such as Prx2, mediate insulin signaling. The aim of our study was to investigate the influence of Prx2 deficiency on insulin signaling. Our western blot results showed that Prx2 deficiency enhanced insulin signaling and increased oxidation of protein tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homologue (PTEN) in mouse embryonic fibroblasts (MEFs) treated with insulin. In addition, we assessed ROS levels with a Cytosol-HyPer H2O2 sensor. As a result, increased ROS levels and Akt activation were decreased by N-acetyl-cysteine (Nac), which acted as an antioxidant in Prx2-deficient MEFs. Body weight measurements and glucose tolerance test (GTT) revealed significant body weight reduction and increase in glucose clearance in Prx2-/- mice fed a high-fat diet. Interestingly, glucose transporter type 4 (GLUT4) was significantly higher in Prx2-/- mice than in wild-type mice according to western blotting results. Western blotting also revealed that Akt phosphorylation was higher in Prx2-/- MEFs and muscle tissue than in wild-type. Together, our findings indicate that increased ROS due to Prx2 deficiency promotes insulin sensitivity and glucose clearance in skeletal muscles by increasing protein tyrosine phosphatase (PTPs) oxidation. These results provide novel insights into the fundamental mechanisms of insulin signaling induced by Prx2 deficiency and suggest that ROS-based therapeutic strategies can be used to suppress insulin resistance.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/fisiología , Resistencia a la Insulina , Insulina/farmacología , Músculo Esquelético/efectos de los fármacos , Proteínas Tirosina Fosfatasas/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Oxidación-Reducción , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal
12.
J Neuroimmunol ; 306: 46-52, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28385187

RESUMEN

Oleuropein is a primary phenolic compound found in olive leaf and Fraxinus rhynchophylla. Here, we investigated the impact of oleuropein on LPS-induced BV-2 microglial cells. Oleuropein suppressed the LPS-induced increase in pro-inflammatory mediators, such as nitric oxide, and pro-inflammatory cytokines, via inhibition of ERK/p38/NF-κB activation and reactive oxygen species (ROS) generation. Furthermore, it suppressed LPS-induced excessive mitochondrial fission, which regulates mitochondrial ROS generation and pro-inflammatory response by diminishing Drp1 dephosphorylation. Collectively, we demonstrated that oleuropein suppresses pro-inflammatory response of microglia by inhibiting Drp1-dependent mitochondrial fission. Our findings suggest a potential role of oleuropein in microglial inflammation-mediated neurodegenerative disorders.


Asunto(s)
Antiinflamatorios/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Iridoides/farmacología , Microglía/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Animales , Línea Celular Transformada , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Glucósidos Iridoides , Lipopolisacáridos/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Dinámicas Mitocondriales/genética , Proteínas del Tejido Nervioso/genética , Óxido Nítrico/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción Genética
13.
Antioxid Redox Signal ; 27(11): 715-726, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28358580

RESUMEN

AIMS: Aberrant Cdk5 (cyclin-dependent kinase 5) and oxidative stress are crucial components of diverse neurodegenerative disorders, including Alzheimer's disease (AD). We previously reported that a change in peroxiredoxin (Prx) expression is associated with protection from neuronal death. The aim of the current study was to analyze the role of Prx in regulating Cdk5 activation in AD. RESULTS: We found that of the six Prx subtypes, Prx5 was increased the most in cellular (N2a-APPswe cells) model of AD. Prx5 in the brain of APP (amyloid precursor protein) transgenic mouse (Tg2576) was more increased than a nontransgenic mouse. We evaluated Prx5 function by using overexpression (Prx5-WT), a mutation in the catalytic residue (Prx5-C48S), and knockdown. Increased neuronal death and Cdk5 activation by amyloid beta oligomer (AßO) were rescued by Prx5-WT expression, but not by Prx5-C48S or Prx5 knockdown. Prx5 plays a role in Cdk5 regulation by inhibiting the conversion of p35 to p25, which is increased by AßO accumulation. Prx5 is also upregulated in both the cytosol and mitochondria and it protects cells from AßO-mediated oxidative stress by eliminating intracellular and mitochondrial reactive oxygen species. Moreover, Prx5 regulates Ca2+ and Ca2+-mediated calpain activation, which are key regulators of p35 cleavage to p25. Innovation and Conclusion: Our study represents the first demonstration that Prx5 induction is a key factor in the suppression of Cdk5-related neuronal death in AD and we show that it functions via regulation of Ca2+-mediated calpain activation. Antioxid. Redox Signal. 27, 715-726.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Peroxirredoxinas/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Calcio/metabolismo , Calpaína/metabolismo , Línea Celular , Quinasa 5 Dependiente de la Ciclina/genética , Citosol/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Mutación , Regulación hacia Arriba
14.
Free Radic Biol Med ; 99: 392-404, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27585948

RESUMEN

Microglial activation is a hallmark of neurodegenerative diseases. ROS activates microglia by regulating transcription factors to express pro-inflammatory genes and is associated with disruption of Ca2+ homeostasis through thiol redox modulation. Recently, we reported that Prx5 can regulate activation of microglia cells by governing ROS. In addition, LPS leads to excessive mitochondrial fission, and regulation of mitochondrial dynamics involved in a pro-inflammatory response is important for the maintenance of microglial activation. However, the precise relationship among these signals and the role of Prx5 in mitochondrial dynamics and microglial activation is still unknown. In this study, we demonstrated that Ca2+/calcineurin-dependent de-phosphorylation of Drp1 induces mitochondrial fission and regulates mitochondrial ROS production, which influences the expression of pro-inflammatory mediators in LPS-induced microglia cells. Moreover, it is likely that cytosolic and Nox-derived ROS were upstream of mitochondrial fission and mitochondrial ROS generation in activated microglia cells. Prx5 regulates LPS-induced mitochondrial fission through modulation of Ca2+/calcineurin-dependent Drp1 de-phosphorylation by eliminating Nox-derived and cytosolic ROS. Therefore, we suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory responses and that Prx5 may be used as a new therapeutic target to prevent neuroinflammation and neurodegenerative diseases.


Asunto(s)
Calcineurina/metabolismo , Calcio/metabolismo , Dinaminas/metabolismo , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Peroxirredoxinas/metabolismo , Animales , Calcineurina/genética , Línea Celular Transformada , Dinaminas/genética , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Microglía/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , NADPH Oxidasa 1/genética , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Oxidación-Reducción , Peroxirredoxinas/genética , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
15.
Neurosci Lett ; 584: 191-6, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25459294

RESUMEN

Activation of microglia cells in the brain contributes to neurodegenerative processes promoted by many neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO). Reactive oxygen species (ROS) actively affect microglia-associated neurodegenerative diseases through their role as pro-inflammatory molecules and modulators of pro-inflammatory processes. Although the ROS which involved in microglia activation are thought to be generated primarily by NADPH oxidase (NOX) and involved in the immune response, mitochondrial ROS have also been proposed as important regulators of the inflammatory response in the innate immune system. However, the role of mitochondrial ROS in microglial activation has yet to be fully elucidated. In this study, we demonstrate that inhibition of mitochondrial ROS by treatment with Mito-TEMPO effectively suppressed the level of mitochondrial and intracellular ROS. Mito-TEMPO treatment also significantly prevented LPS-induced increase in the TNF-α, IL-1ß, IL-6, iNOS and Cox-2 in BV-2 and primary microglia cells. Furthermore, LPS-induced suppression of mitochondrial ROS generation not only affected LPS-stimulated activation of MAPKs, including ERK, JNK, and p38, but also regulated IκB activation and NF-κB nuclear localization. These results indicate that mitochondria constitute a major source of ROS generation in LPS-mediated activated microglia cells. Additionally, suppression of LPS-induced mitochondrial ROS plays a role in modulating the production of pro-inflammatory mediators by preventing MAPK and NF-κB activation in microglia cells. Our findings suggest that a potential strategy in the development of therapy for inflammation-associated degenerative neurological diseases involves targeting the regulation of mitochondrial ROS in microglial cells.


Asunto(s)
Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Inflamación/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Ratones , Microglía/metabolismo , Compuestos Organofosforados/farmacología , Piperidinas/farmacología , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA