Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Genet ; 21(6): 377-384, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251390

RESUMEN

Addressing Indigenous rights and interests in genetic resources has become increasingly challenging in an open science environment that promotes unrestricted access to genomic data. Although Indigenous experiences with genetic research have been shaped by a series of negative interactions, there is increasing recognition that equitable benefits can only be realized through greater participation of Indigenous communities. Issues of trust, accountability and equity underpin Indigenous critiques of genetic research and the sharing of genomic data. This Perspectives article highlights identified issues for Indigenous communities around the sharing of genomic data and suggests principles and actions that genomic researchers can adopt to recognize community rights and interests in data.


Asunto(s)
Privacidad Genética/ética , Genómica/ética , Pueblos Indígenas/genética , Difusión de la Información/ética , Acceso a la Información , Investigación Genética/ética , Genoma Humano/genética , Derechos Humanos , Humanos
2.
New Phytol ; 242(5): 2270-2284, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38532557

RESUMEN

Floral nectar composition beyond common sugars shows great diversity but contributing genetic factors are generally unknown. Manuka (Leptospermum scoparium) is renowned for the antimicrobial compound methylglyoxal in its derived honey, which originates from the precursor, dihydroxyacetone (DHA), accumulating in the nectar. Although this nectar trait is highly variable, genetic contribution to the trait is unclear. Therefore, we investigated key gene(s) and genomic regions underpinning this trait. We used RNAseq analysis to identify nectary-associated genes differentially expressed between high and low nectar DHA genotypes. We also used a manuka high-density linkage map and quantitative trait loci (QTL) mapping population, supported by an improved genome assembly, to reveal genetic regions associated with nectar DHA content. Expression and QTL analyses both pointed to the involvement of a phosphatase gene, LsSgpp2. The expression pattern of LsSgpp2 correlated with nectar DHA accumulation, and it co-located with a QTL on chromosome 4. The identification of three QTLs, some of the first reported for a plant nectar trait, indicates polygenic control of DHA content. We have established plant genetics as a key influence on DHA accumulation. The data suggest the hypothesis of LsSGPP2 releasing DHA from DHA-phosphate and variability in LsSgpp2 gene expression contributing to the trait variability.


Asunto(s)
Dihidroxiacetona , Regulación de la Expresión Génica de las Plantas , Leptospermum , Néctar de las Plantas , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Néctar de las Plantas/metabolismo , Dihidroxiacetona/metabolismo , Leptospermum/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Genes de Plantas , Genotipo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Phytopathology ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875168

RESUMEN

Austropuccinia psidii is the causal pathogen of myrtle rust disease of Myrtaceae. To gain understanding of the initial infection process, gene expression in germinating Austropuccinia psidii urediniospores and in Leptospermum scoparium inoculated leaves were investigated via analyses of RNAseq samples taken 24 and 48 hours post inoculation (hpi). Principal component analyses of transformed transcript count data revealed differential gene expression between the uninoculated L. scoparium control plants that correlated with the three plant leaf resistance phenotypes (immunity, hypersensitive response and susceptibility). Gene expression in the immune resistant plants did not significantly change in response to fungal inoculation, while susceptible plants showed differential expression of genes in response to fungal challenge. A putative disease resistance gene, jg24539.t1, was identified in the L. scoparium hypersensitive response phenotype family. Expression of this gene may be associated with the phenotype and could be important for further understanding the plant hypersensitive response to A. psidii challenge. Differential expression of pathogen genes was found between samples taken 24 and 48 hpi, but there were no significant differences in pathogen gene expression that were associated with the three different plant leaf resistance phenotypes. There was a significant decrease in the abundance of fungal transcripts encoding three putative effectors and a putative carbohydrate-active enzyme between 24 and 48 hpi, suggesting that the encoded proteins are important during the initial phase of infection. These transcripts, or their translated proteins, may be potential targets to impede the early phases of fungal infection by this wide-host range obligate biotrophic basidiomycete.

4.
New Phytol ; 237(3): 1024-1039, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35962608

RESUMEN

Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.


Asunto(s)
Arándanos Azules (Planta) , Tetraploidía , Arándanos Azules (Planta)/genética , Patrón de Herencia , Poliploidía , Cromosomas
5.
Plant Biotechnol J ; 20(7): 1285-1297, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35258172

RESUMEN

Allele-specific expression (ASE) can lead to phenotypic diversity and evolution. However, the mechanisms regulating ASE are not well understood, particularly in woody perennial plants. In this study, we investigated ASE genes in the apple cultivar 'Royal Gala' (RG). A high quality chromosome-level genome was assembled using a homozygous tetra-haploid RG plant, derived from anther cultures. Using RNA-sequencing (RNA-seq) data from RG flower and fruit tissues, we identified 2091 ASE genes. Compared with the haploid genome of 'Golden Delicious' (GD), a parent of RG, we distinguished the genomic sequences between the two alleles of 817 ASE genes, and further identified allele-specific presence of a transposable element (TE) in the upstream region of 354 ASE genes. These included MYB110a that encodes a transcription factor regulating anthocyanin biosynthesis. Interestingly, another ASE gene, MYB10 also showed an allele-specific TE insertion and was identified using genome data of other apple cultivars. The presence of the TE insertion in both MYB genes was positively associated with ASE and anthocyanin accumulation in apple petals through analysis of 231 apple accessions, and thus underpins apple flower colour evolution. Our study demonstrated the importance of TEs in regulating ASE on a genome-wide scale and presents a novel method for rapid identification of ASE genes and their regulatory elements in plants.


Asunto(s)
Malus , Alelos , Antocianinas , Color , Elementos Transponibles de ADN , Flores/genética , Flores/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta , Malus/metabolismo , Proteínas de Plantas/genética
6.
J Exp Bot ; 73(13): 4396-4411, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35259256

RESUMEN

Life on land exposes plants to varied abiotic and biotic environmental stresses. These environmental drivers contributed to a large expansion of metabolic capabilities during land plant evolution and species diversification. In this review we summarize knowledge on how the specialized metabolite pathways of bryophytes may contribute to stress tolerance capabilities. Bryophytes are the non-tracheophyte land plant group (comprising the hornworts, liverworts, and mosses) and rapidly diversified following the colonization of land. Mosses and liverworts have as wide a distribution as flowering plants with regard to available environments, able to grow in polar regions through to hot desert landscapes. Yet in contrast to flowering plants, for which the biosynthetic pathways, transcriptional regulation, and compound function of stress tolerance-related metabolite pathways have been extensively characterized, it is only recently that similar data have become available for bryophytes. The bryophyte data are compared with those available for angiosperms, including examining how the differing plant forms of bryophytes and angiosperms may influence specialized metabolite diversity and function. The involvement of stress-induced specialized metabolites in senescence and nutrient response pathways is also discussed.


Asunto(s)
Briófitas , Magnoliopsida , Vías Biosintéticas , Plantas , Estrés Fisiológico
7.
Ann Bot ; 130(5): 613-636, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36070407

RESUMEN

BACKGROUND: Land plants commonly produce red pigmentation as a response to environmental stressors, both abiotic and biotic. The type of pigment produced varies among different land plant lineages. In the majority of species they are flavonoids, a large branch of the phenylpropanoid pathway. Flavonoids that can confer red colours include 3-hydroxyanthocyanins, 3-deoxyanthocyanins, sphagnorubins and auronidins, which are the predominant red pigments in flowering plants, ferns, mosses and liverworts, respectively. However, some flowering plants have lost the capacity for anthocyanin biosynthesis and produce nitrogen-containing betalain pigments instead. Some terrestrial algal species also produce red pigmentation as an abiotic stress response, and these include both carotenoid and phenolic pigments. SCOPE: In this review, we examine: which environmental triggers induce red pigmentation in non-reproductive tissues; theories on the functions of stress-induced pigmentation; the evolution of the biosynthetic pathways; and structure-function aspects of different pigment types. We also compare data on stress-induced pigmentation in land plants with those for terrestrial algae, and discuss possible explanations for the lack of red pigmentation in the hornwort lineage of land plants. CONCLUSIONS: The evidence suggests that pigment biosynthetic pathways have evolved numerous times in land plants to provide compounds that have red colour to screen damaging photosynthetically active radiation but that also have secondary functions that provide specific benefits to the particular land plant lineage.


Asunto(s)
Antocianinas , Embryophyta , Antocianinas/metabolismo , Pigmentación , Betalaínas/metabolismo , Plantas/metabolismo , Flavonoides/metabolismo
8.
BMC Genomics ; 22(1): 785, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727894

RESUMEN

BACKGROUND: The genetic control of sex determination in teleost species is poorly understood. This is partly because of the diversity of mechanisms that determine sex in this large group of vertebrates, including constitutive genes linked to sex chromosomes, polygenic constitutive mechanisms, environmental factors, hermaphroditism, and unisexuality. Here we use a de novo genome assembly of New Zealand silver trevally (Pseudocaranx georgianus) together with sex-specific whole genome sequencing data to detect sexually divergent genomic regions, identify candidate genes and develop molecular makers. RESULTS: The de novo assembly of an unsexed trevally (Trevally_v1) resulted in a final assembly of 579.4 Mb in length, with a N50 of 25.2 Mb. Of the assembled scaffolds, 24 were of chromosome scale, ranging from 11 to 31 Mb in length. A total of 28,416 genes were annotated after 12.8 % of the assembly was masked with repetitive elements. Whole genome re-sequencing of 13 wild sexed trevally (seven males and six females) identified two sexually divergent regions located on two scaffolds, including a 6 kb region at the proximal end of chromosome 21. Blast analyses revealed similarity between one region and the aromatase genes cyp19 (a1a/b) (E-value < 1.00E-25, identity > 78.8 %). Males contained higher numbers of heterozygous variants in both regions, while females showed regions of very low read-depth, indicative of male-specificity of this genomic region. Molecular markers were developed and subsequently tested on 96 histologically-sexed fish (42 males and 54 females). Three markers amplified in absolute correspondence with sex (positive in males, negative in females). CONCLUSIONS: The higher number of heterozygous variants in males combined with the absence of these regions in females support a XY sex-determination model, indicating that the trevally_v1 genome assembly was developed from a male specimen. This sex system contrasts with the ZW sex-determination model documented in closely related carangid species. Our results indicate a sex-determining function of a cyp19a1a-like gene, suggesting the molecular pathway of sex determination is somewhat conserved in this family. The genomic resources developed here will facilitate future comparative work, and enable improved insights into the varied sex determination pathways in teleosts. The sex marker developed in this study will be a valuable resource for aquaculture selective breeding programmes, and for determining sex ratios in wild populations.


Asunto(s)
Peces , Genoma , Animales , Femenino , Peces/genética , Genómica , Masculino , Nueva Zelanda , Cromosomas Sexuales/genética
9.
BMC Plant Biol ; 21(1): 334, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34261431

RESUMEN

BACKGROUND: The skin (exocarp) of fleshy fruit is hugely diverse across species. Most fruit types have a live epidermal skin covered by a layer of cuticle made up of cutin while a few create an outermost layer of dead cells (peridermal layer). RESULTS: In this study we undertook crosses between epidermal and peridermal skinned kiwifruit, and showed that epidermal skin is a semi-dominant trait. Furthermore, backcrossing these epidermal skinned hybrids to a peridermal skinned fruit created a diverse range of phenotypes ranging from epidermal skinned fruit, through fruit with varying degrees of patches of periderm (russeting), to fruit with a complete periderm. Quantitative trait locus (QTL) analysis of this population suggested that periderm formation was associated with four loci. These QTLs were aligned either to ones associated with russet formation on chromosome 19 and 24, or cuticle integrity and coverage located on chromosomes 3, 11 and 24. CONCLUSION: From the segregation of skin type and QTL analysis, it appears that skin development in kiwifruit is controlled by two competing factors, cuticle strength and propensity to russet. A strong cuticle will inhibit russeting while a strong propensity to russet can create a continuous dead skinned periderm.


Asunto(s)
Actinidia/genética , Frutas/genética , Genes de Plantas , Sitios Genéticos , Desarrollo de la Planta/genética , Actinidia/crecimiento & desarrollo , Cruzamientos Genéticos , Frutas/crecimiento & desarrollo , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo
10.
Plant Physiol ; 184(2): 738-752, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32732350

RESUMEN

Epidemics of obesity and type 2 diabetes drive strong consumer interest in plant-based low-calorie sweeteners. Trilobatin is a sweetener found at high concentrations in the leaves of a range of crabapple (Malus) species, but not in domesticated apple (Malus × domestica) leaves, which contain trilobatin's bitter positional isomer phloridzin. Variation in trilobatin content was mapped to the Trilobatin locus on LG 7 in a segregating population developed from a cross between domesticated apples and crabapples. Phloretin glycosyltransferase2 (PGT2) was identified by activity-directed protein purification and differential gene expression analysis in samples high in trilobatin but low in phloridzin. Markers developed for PGT2 cosegregated strictly with the Trilobatin locus. Biochemical analysis showed PGT2 efficiently catalyzed 4'-o-glycosylation of phloretin to trilobatin as well as 3-hydroxyphloretin to sieboldin. Transient expression of double bond reductase, chalcone synthase, and PGT2 genes reconstituted the apple pathway for trilobatin production in Nicotiana benthamiana Transgenic M. × domestica plants overexpressing PGT2 produced high concentrations of trilobatin in young leaves. Transgenic plants were phenotypically normal, and no differences in disease susceptibility were observed compared to wild-type plants grown under simulated field conditions. Sensory analysis indicated that apple leaf teas from PGT2 transgenics were readily discriminated from control leaf teas and were perceived as significantly sweeter. Identification of PGT2 allows marker-aided selection to be developed to breed apples containing trilobatin, and for high amounts of this natural low-calorie sweetener to be produced via biopharming and metabolic engineering in yeast.


Asunto(s)
Chalconas/metabolismo , Flavonoides/biosíntesis , Malus/metabolismo , Floretina/metabolismo , Polifenoles/biosíntesis , Edulcorantes/metabolismo , Glicosiltransferasas/metabolismo , Plantas Modificadas Genéticamente
11.
Plant J ; 100(6): 1148-1162, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31436867

RESUMEN

Terpenes are important compounds in plant trophic interactions. A meta-analysis of GC-MS data from a diverse range of apple (Malus × domestica) genotypes revealed that apple fruit produces a range of terpene volatiles, with the predominant terpene being the acyclic branched sesquiterpene (E,E)-α-farnesene. Four quantitative trait loci (QTLs) for α-farnesene production in ripe fruit were identified in a segregating 'Royal Gala' (RG) × 'Granny Smith' (GS) population with one major QTL on linkage group 10 co-locating with the MdAFS1 (α-farnesene synthase-1) gene. Three of the four QTLs were derived from the GS parent, which was consistent with GC-MS analysis of headspace and solvent-extracted terpenes showing that cold-treated GS apples produced higher levels of (E,E)-α-farnesene than RG. Transgenic RG fruit downregulated for MdAFS1 expression produced significantly lower levels of (E,E)-α-farnesene. To evaluate the role of (E,E)-α-farnesene in fungal pathogenesis, MdAFS1 RNA interference transgenic fruit and RG controls were inoculated with three important apple post-harvest pathogens [Colletotrichum acutatum, Penicillium expansum and Neofabraea alba (synonym Phlyctema vagabunda)]. From results obtained over four seasons, we demonstrate that reduced (E,E)-α-farnesene is associated with decreased disease initiation rates of all three pathogens. In each case, the infection rate was significantly reduced 7 days post-inoculation, although the size of successful lesions was comparable with infections on control fruit. These results indicate that (E,E)-α-farnesene production is likely to be an important factor involved in fungal pathogenesis in apple fruit.


Asunto(s)
Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Enfermedades de las Plantas/inmunología , Sesquiterpenos/metabolismo , Colletotrichum/patogenicidad , Resistencia a la Enfermedad , Regulación hacia Abajo , Hongos/patogenicidad , Cromatografía de Gases y Espectrometría de Masas , Ligamiento Genético , Genotipo , Penicillium/patogenicidad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo , Interferencia de ARN/inmunología , Terpenos/metabolismo
12.
Plant Dis ; 104(6): 1771-1780, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32272027

RESUMEN

Resistance to the pandemic strain of Austropuccinia psidii was identified in New Zealand provenance Leptospermum scoparium, Kunzea robusta, and K. linearis plants. Only 1 Metrosideros excelsa-resistant plant was found (of the 570 tested) and no resistant plants of either Lophomyrtus bullata or L. obcordata were found. Three types of resistance were identified in Leptospermum scoparium. The first two, a putative immune response and a hypersensitive response, are leaf resistance mechanisms found in other myrtaceous species while on the lateral and main stems a putative immune stem resistance was also observed. Both leaf and stem infection were found on K. robusta and K. linearis plants as well as branch tip dieback that developed on almost 50% of the plants. L. scoparium, K. robusta, and K. linearis are the first myrtaceous species where consistent infection of stems has been observed in artificial inoculation trials. This new finding and the first observation of significant branch tip dieback of plants of the two Kunzea spp. resulted in the development of two new myrtle rust disease severity assessment scales. Significant seed family and provenance effects were found in L. scoparium, K. robusta, and K. linearis: some families produced significantly more plants with leaf, stem, and (in Kunzea spp.) branch tip dieback resistance, and provenances provided different percentages of resistant families and plants. The distribution of the disease symptoms on plants from the same seed family, and between plants from different seed families, suggested that the leaf, stem, and branch tip dieback resistances were the result of independent disease resistance mechanisms.


Asunto(s)
Basidiomycota , Kunzea , Leptospermum , Nueva Zelanda , Hojas de la Planta
13.
BMC Genomics ; 20(1): 331, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046664

RESUMEN

BACKGROUND: Both a source of diversity and the development of genomic tools, such as reference genomes and molecular markers, are equally important to enable faster progress in plant breeding. Pear (Pyrus spp.) lags far behind other fruit and nut crops in terms of employment of available genetic resources for new cultivar development. To address this gap, we designed a high-density, high-efficiency and robust single nucleotide polymorphism (SNP) array for pear, with the main objectives of conducting genetic diversity and genome-wide association studies. RESULTS: By applying a two-step design process, which consisted of the construction of a first 'draft' array for the screening of a small subset of samples, we were able to identify the most robust and informative SNPs to include in the Applied Biosystems™ Axiom™ Pear 70 K Genotyping Array, currently the densest SNP array for pear. Preliminary evaluation of this 70 K array in 1416 diverse pear accessions from the USDA National Clonal Germplasm Repository (NCGR) in Corvallis, OR identified 66,616 SNPs (93% of all the tiled SNPs) as high quality and polymorphic (PolyHighResolution). We further used the Axiom Pear 70 K Genotyping Array to construct high-density linkage maps in a bi-parental population, and to make a direct comparison with available genotyping-by-sequencing (GBS) data, which suggested that the SNP array is a more robust method of screening for SNPs than restriction enzyme reduced representation sequence-based genotyping. CONCLUSIONS: The Axiom Pear 70 K Genotyping Array, with its high efficiency in a widely diverse panel of Pyrus species and cultivars, represents a valuable resource for a multitude of molecular studies in pear. The characterization of the USDA-NCGR collection with this array will provide important information for pear geneticists and breeders, as well as for the optimization of conservation strategies for Pyrus.


Asunto(s)
Mapeo Cromosómico/métodos , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Polimorfismo de Nucleótido Simple , Pyrus/genética , Semillas/genética , Cromosomas de las Plantas , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje
14.
BMC Plant Biol ; 19(1): 532, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791233

RESUMEN

BACKGROUND: Although the most common path of infection for fire blight, a severe bacterial disease on apple, is via host plant flowers, quantitative trait loci (QTLs) for fire blight resistance to date have exclusively been mapped following shoot inoculation. It is not known whether the same mechanism underlies flower and shoot resistance. RESULTS: We report the detection of a fire blight resistance QTL following independent artificial inoculation of flowers and shoots on two F1 segregating populations derived from crossing resistant Malus ×robusta 5 (Mr5) with susceptible 'Idared' and 'Royal Gala' in experimental orchards in Germany and New Zealand, respectively. QTL mapping of phenotypic datasets from artificial flower inoculation of the 'Idared' × Mr5 population with Erwinia amylovora over several years, and of the 'Royal Gala' × Mr5 population in a single year, revealed a single major QTL controlling floral fire blight resistance on linkage group 3 (LG3) of Mr5. This QTL corresponds to the QTL on LG3 reported previously for the 'Idared' × Mr5 and an 'M9' × Mr5 population following shoot inoculation in the glasshouse. Interval mapping of phenotypic data from shoot inoculations of subsets from both flower resistance populations re-confirmed that the resistance QTL is in the same position on LG3 of Mr5 as that for flower inoculation. These results provide strong evidence that fire blight resistance in Mr5 is controlled by a major QTL on LG3, independently of the mode of infection, rootstock and environment. CONCLUSIONS: This study demonstrates for the first time that resistance to fire blight caused by Erwinia amylovora is independent of the mode of inoculation at least in Malus ×robusta 5.


Asunto(s)
Resistencia a la Enfermedad/genética , Erwinia amylovora/fisiología , Genes de Plantas , Ligamiento Genético , Malus/microbiología , Enfermedades de las Plantas/genética , Flores/microbiología , Flores/fisiología , Malus/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo
15.
Plant J ; 91(2): 292-305, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28380280

RESUMEN

Fruit accumulate a diverse set of volatiles including esters and phenylpropenes. Volatile esters are synthesised via fatty acid degradation or from amino acid precursors, with the final step being catalysed by alcohol acyl transferases (AATs). Phenylpropenes are produced as a side branch of the general phenylpropanoid pathway. Major quantitative trait loci (QTLs) on apple (Malus × domestica) linkage group (LG)2 for production of the phenylpropene estragole and volatile esters (including 2-methylbutyl acetate and hexyl acetate) both co-located with the MdAAT1 gene. MdAAT1 has previously been shown to be required for volatile ester production in apple (Plant J., 2014, https://doi.org/10.1111/tpj.12518), and here we show it is also required to produce p-hydroxycinnamyl acetates that serve as substrates for a bifunctional chavicol/eugenol synthase (MdoPhR5) in ripe apple fruit. Fruit from transgenic 'Royal Gala' MdAAT1 knockdown lines produced significantly reduced phenylpropene levels, whilst manipulation of the phenylpropanoid pathway using MdCHS (chalcone synthase) knockout and MdMYB10 over-expression lines increased phenylpropene production. Transient expression of MdAAT1, MdoPhR5 and MdoOMT1 (O-methyltransferase) genes reconstituted the apple pathway to estragole production in tobacco. AATs from ripe strawberry (SAAT1) and tomato (SlAAT1) fruit can also utilise p-coumaryl and coniferyl alcohols, indicating that ripening-related AATs are likely to link volatile ester and phenylpropene production in many different fruit.


Asunto(s)
Anisoles/metabolismo , Malus/metabolismo , Proteínas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Derivados de Alilbenceno , Ésteres/metabolismo , Fragaria/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Solanum lycopersicum/genética , Malus/genética , Redes y Vías Metabólicas , Fenoles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas/genética , Sitios de Carácter Cuantitativo , Nicotiana/metabolismo
16.
BMC Genomics ; 19(1): 257, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661190

RESUMEN

BACKGROUND: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. RESULTS: A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. CONCLUSIONS: Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.


Asunto(s)
Actinidia/genética , Genoma de Planta , Genes de Plantas , Genotipo , Anotación de Secuencia Molecular , Proteínas de Plantas/genética
17.
Plant J ; 82(6): 937-950, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25904040

RESUMEN

Phenylpropenes, such as eugenol and trans-anethole, are important aromatic compounds that determine flavour and aroma in many herbs and spices. Some apple varieties produce fruit with a highly desirable spicy/aromatic flavour that has been attributed to the production of estragole, a methylated phenylpropene. To elucidate the molecular basis for estragole production and its contribution to ripe apple flavour and aroma we characterised a segregating population from a Royal Gala (RG, estragole producer) × Granny Smith (GS, non-producer) apple cross. Two quantitative trait loci (QTLs; accounting for 9.2 and 24.8% of the variation) on linkage group (LG) 1 and LG2 were identified that co-located with seven candidate genes for phenylpropene O-methyltransferases (MdoOMT1-7). Of these genes, only expression of MdoOMT1 on LG1 increased strongly with ethylene and could be correlated with increasing estragole production in ripening RG fruit. Transient over-expression in tobacco showed that MdoOMT1 utilised a range of phenylpropene substrates and catalysed the conversion of chavicol to estragole. Royal Gala carried two alleles (MdoOMT1a, MdoOMT1b) whilst GS appeared to be homozygous for MdoOMT1b. MdoOMT1a showed a higher affinity and catalytic efficiency towards chavicol than MdoOMT1b, which could account for the phenotypic variation at the LG1 QTL. Multiple transgenic RG lines with reduced MdoOMT1 expression produced lower levels of methylated phenylpropenes, including estragole and methyleugenol. Differences in fruit aroma could be perceived in these fruit, compared with controls, by sensory analysis. Together these results indicate that MdoOMT1 is required for the production of methylated phenylpropenes in apple and that phenylpropenes including estragole may contribute to ripe apple fruit aroma.


Asunto(s)
Anisoles/metabolismo , Frutas/metabolismo , Malus/metabolismo , Metiltransferasas/metabolismo , Proteínas de Plantas/genética , Derivados de Alilbenceno , Etilenos/metabolismo , Eugenol/análogos & derivados , Eugenol/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Malus/genética , Metiltransferasas/genética , Datos de Secuencia Molecular , Odorantes , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo
18.
Plant J ; 84(2): 417-27, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26358530

RESUMEN

The molecular genetic mechanisms underlying fruit size remain poorly understood in perennial crops, despite size being an important agronomic trait. Here we show that the expression level of a microRNA gene (miRNA172) influences fruit size in apple. A transposon insertional allele of miRNA172 showing reduced expression associates with large fruit in an apple breeding population, whereas over-expression of miRNA172 in transgenic apple significantly reduces fruit size. The transposon insertional allele was found to be co-located with a major fruit size quantitative trait locus, fixed in cultivated apples and their wild progenitor species with relatively large fruit. This finding supports the view that the selection for large size in apple fruit was initiated prior to apple domestication, likely by large mammals, before being subsequently strengthened by humans, and also helps to explain why signatures of genetic bottlenecks and selective sweeps are normally weaker in perennial crops than in annual crops.


Asunto(s)
Frutas/genética , Malus/genética , MicroARNs/genética , Alelos
19.
Plant J ; 78(6): 903-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24661745

RESUMEN

The 'fruity' attributes of ripe apples (Malus × domestica) arise from our perception of a combination of volatile ester compounds. Phenotypic variability in ester production was investigated using a segregating population from a 'Royal Gala' (RG; high ester production) × 'Granny Smith' (GS; low ester production) cross, as well as in transgenic RG plants in which expression of the alcohol acyl transferase 1 (AAT1) gene was reduced. In the RG × GS population, 46 quantitative trait loci (QTLs) for the production of esters and alcohols were identified on 15 linkage groups (LGs). The major QTL for 35 individual compounds was positioned on LG2 and co-located with AAT1. Multiple AAT1 gene variants were identified in RG and GS, but only two (AAT1-RGa and AAT1-GSa) were functional. AAT1-RGa and AAT1-GSa were both highly expressed in the cortex and skin of ripe fruit, but AAT1 protein was observed mainly in the skin. Transgenic RG specifically reduced in AAT1 expression showed reduced levels of most key esters in ripe fruit. Differences in the ripe fruit aroma could be perceived by sensory analysis. The transgenic lines also showed altered ratios of biosynthetic precursor alcohols and aldehydes, and expression of a number of ester biosynthetic genes increased, presumably in response to the increased substrate pool. These results indicate that the AAT1 locus is critical for the biosynthesis of esters contributing to a 'ripe apple' flavour.


Asunto(s)
Acetiltransferasas/genética , Ésteres/metabolismo , Malus/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Acetiltransferasas/metabolismo , Acetiltransferasas/fisiología , Mapeo Cromosómico , Regulación hacia Abajo , Estudios de Asociación Genética , Ligamiento Genético , Variación Genética , Malus/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo
20.
BMC Genomics ; 16: 848, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26493398

RESUMEN

BACKGROUND: Copy number variation (CNV) is a common feature of eukaryotic genomes, and a growing body of evidence suggests that genes affected by CNV are enriched in processes that are associated with environmental responses. Here we use next generation sequence (NGS) data to detect copy-number variable regions (CNVRs) within the Malus x domestica genome, as well as to examine their distribution and impact. METHODS: CNVRs were detected using NGS data derived from 30 accessions of M. x domestica analyzed using the read-depth method, as implemented in the CNVrd2 software. To improve the reliability of our results, we developed a quality control and analysis procedure that involved checking for organelle DNA, not repeat masking, and the determination of CNVR identity using a permutation testing procedure. RESULTS: Overall, we identified 876 CNVRs, which spanned 3.5 % of the apple genome. To verify that detected CNVRs were not artifacts, we analyzed the B- allele-frequencies (BAF) within a single nucleotide polymorphism (SNP) array dataset derived from a screening of 185 individual apple accessions and found the CNVRs were enriched for SNPs having aberrant BAFs (P < 1e-13, Fisher's Exact test). Putative CNVRs overlapped 845 gene models and were enriched for resistance (R) gene models (P < 1e-22, Fisher's exact test). Of note was a cluster of resistance gene models on chromosome 2 near a region containing multiple major gene loci conferring resistance to apple scab. CONCLUSION: We present the first analysis and catalogue of CNVRs in the M. x domestica genome. The enrichment of the CNVRs with R gene models and their overlap with gene loci of agricultural significance draw attention to a form of unexplored genetic variation in apple. This research will underpin further investigation of the role that CNV plays within the apple genome.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genoma , Malus/genética , Genotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA