Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 348: 119330, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871548

RESUMEN

Many soil and water conservation measures (SWCM) have been implemented in the Loess Plateau of China, and they have an impact on ecosystems all levels and involve complicated mechanisms. Previously, studies typically focused on a single factor's effect on diversity or productivity. With this background, the current investigation embarked on an extensive study, with vegetation survey conducted in the no measure plots (NM), vegetation measure plots (VM) and engineering measure plots (EM) in the Loess Plateau of China. We used structural equation models (SEM) to explain the mechanism by which SWCM affects plant productivity and diversity. VM have direct effects on plant diversity, and EM have direct effects on soil properties and community structure. The two measures also had indirect effects on plant functional traits and community structure. The results show that the changes in plant functional traits and community structure by SWCM decreased plant diversity, whereas the increase of productivity was primarily dominated by improvements in community structure, and we conclude that variability in plant diversity and productivity across different measures on the Loess Plateau was primarily due to the responses of different plants to variable soil properties and the community responses. It was also emphasized that vegetation measures were beneficial to the increase of biomass per plant, while engineering measures were more beneficial to the growth of dominant species. These findings provide a theoretical foundation for vegetation management and restoration after the application of different SWCM.


Asunto(s)
Conservación de los Recursos Hídricos , Ecosistema , Suelo , Plantas , Biomasa , China
2.
Zhonghua Yi Xue Za Zhi ; 95(7): 530-2, 2015 Feb 17.
Artículo en Zh | MEDLINE | ID: mdl-25916931

RESUMEN

OBJECTIVE: To explore the levels of autoantibodies against AT1-receptor (AT1-AA) in hypertensive patients with acute coronary syndrome (ACS) and observe the in vitro effects of AT1-AA on resting tension of isolated anterior descending artery of vascular ring in male Wistar rats. METHODS: All patients were recruited from June 2007 to August 2008. There were hypertensive patients with ACS (n = 120), those with simple hypertension (n = 253) and those with simple ACS (n = 115). And the outpatients for health examination during the same period were selected as healthy control group (n = 188). The second extracellular loop amino acid sequences of peptides of ATI receptor was synthesized and used as antigen (AT1-Ag) and sialic acid-enzyme-linked immunosorbent assay (SA-ELISA) for detect the serum levels of AT1-AA. Microvascular ring tension technology was used to test the vascular loop resting tension of anterior descending coronary artery from rats induced by a high-fat diet. RESULTS: The positive rates of AT1-AA in patients with simple hypertension (35.2%) and those with simple ACS (30.4%) were significantly higher than those in healthy control group (7.2%, P < 0.01). And the positive rate of AT1-AA in hypertensive patients with ACS (43.3%) was significantly higher than that in those with simple hypertension (35.2%, P < 0.05) and that in healthy control group (7.2%, P < 0.05).Furthermore, AT1-AA increased the vascular loop resting tension of anterior descending coronary artery rings in rats induced by a high-fat diet in a dose-dependant manner. And the vasoconstrictive action of AT1-AA was equal to 46.4% of AngII's action. And such an action was blocked by losartan and antigens. CONCLUSION: The level of AT1-AA increases markedly in hypertensive patients with ACS. And AT1-AA induces vasoconstrictive effects on anterior descending artery rings in rats induced by a high-fat diet.


Asunto(s)
Síndrome Coronario Agudo , Hipertensión , Animales , Aorta , Autoanticuerpos , Dieta Alta en Grasa , Ensayo de Inmunoadsorción Enzimática , Humanos , Masculino , Ratas , Ratas Wistar , Receptor de Angiotensina Tipo 1 , Vasoconstricción
3.
Exp Ther Med ; 27(1): 38, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38125367

RESUMEN

Cardiac hypertrophy, characterized by cardiomyocyte enlargement, is an adaptive response of the heart to certain hypertrophic stimuli; however, prolonged hypertrophy results in cardiac dysfunction and can ultimately cause heart failure. The present study evaluated the role of semaphorin-3A (Sema3A), a neurochemical inhibitor, in cardiac hypertrophy, utilizing an isoproterenol (ISO) induced H9c2 cell model. Cells were stained with rhodamine-phalloidin to assess the cell surface area and reverse transcription-quantitative PCR was performed to quantify mRNA expression levels of Sema3A, brain natriuretic factor (BNF) and ß-myosin heavy chain (ß-MHC). The protein expression levels of the autophagy-related proteins light chain 3 (LC3), p62 and Beclin-1, and the Akt/mTOR signaling pathway associated proteins Akt, phosphorylated (p)-Akt, mTOR, p-mTOR, 4E-binding protein 1 (4EBP1) and p-4EBP1 were semi-quantified using western blotting. Rapamycin, a canonical autophagy inducer, was administered to H9c2 cells to elucidate the regulatory mechanism of Sema3A. The results indicated significantly increased cell surface area and elevated BNF and ß-MHC mRNA expression levels, increased LC3II/I ratio and Beclin-1 protein expression levels and significantly decreased p62 protein expression levels after treatment of H9c2 cardiomyocytes with ISO for 24 h. Sema3A overexpression improved ISO-induced hypertrophy in H9c2 cells, indicated by decreased cell surface area and reduced BNF and ß-MHC mRNA expression levels. Moreover, Sema3A overexpression inhibited ISO-induced autophagy in H9c2 cells, indicated by decreased LC3II/I ratio and Beclin-1 protein expression levels and increased p62 protein expression levels. The autophagy activator rapamycin partially inhibited the protective effect of Sema3A on ISO-induced hypertrophy. Sema3A overexpression suppressed the decrease of the protein expression levels of p-Akt, mTOR and their downstream target 4EBP1, which is induced by ISO. Collectively, these results suggested Sema3A prevented ISO-induced cardiac hypertrophy by inhibiting autophagy via the Akt/mTOR signaling pathway.

4.
Am J Transl Res ; 15(8): 5129-5144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692938

RESUMEN

OBJECTIVES: Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, a novel class of cholesterol-lowering drugs, can reduce atherosclerosis independent of systemic lipid changes. However, the mechanism by which PCSK9 inhibition protects against arteriosclerosis has not been fully elucidated. Recent evidence has demonstrated a correlation between PCSK9 inhibitors and oxidative stress, which accelerates atherosclerotic development. Moreover, an increasing number of studies have shown that autophagy protects the vasculature against atherosclerosis. Therefore, the aims of this study were to investigate the effect of PCSK9 inhibition on oxidative stress and autophagy in atherosclerosis and determine whether autophagy regulates PCSK9 inhibition-mediated oxidative stress and inflammation in macrophages. METHODS: Male apolipoprotein E (ApoE)-/- mice were fed a high-fat diet (HFD) for 8 weeks and then received the PCSK9 inhibitor (evolocumab), vehicle, or evolocumab plus chloroquine (CQ) for another 8 weeks. ApoE-/- mice in the control group were fed a regular (i.e., non-high-fat) diet for 16 weeks. Additional in vitro experiments were performed in oxidized low-density lipoprotein (ox-LDL)-treated human acute monocytic leukemia cell line THP-1-derived macrophages to mimic the pathophysiologic process of atherosclerosis. RESULTS: PCSK9 inhibitor treatment reduced oxidative stress, lipid deposition, and plaque lesion area and induced autophagy in HFD-fed ApoE-/- mice. Most importantly, the administration of chloroquine (CQ), an autophagy inhibitor, significantly reduced the beneficial effects of PCSK9-inhibitor treatment on oxidative stress, lipid accumulation, inflammation, and atherosclerotic lesions in HFD-fed ApoE-/- mice. The in vitro experiments further showed that the PCSK9 inhibitor enhanced autophagic flux in ox-LDL-treated THP-1-derived macrophages, as indicated by increases in the numbers of autophagosomes and autolysosomes. Moreover, the autophagy inhibitor CQ also reduced PCSK9 inhibition-mediated protection against oxidative stress, generation of reactive oxygen species (ROS) and inflammation in ox-LDL-treated THP-1-derived macrophages. CONCLUSIONS: This study reveals a novel protective mechanism by which PCSK9 inhibition enhances autophagy and thereby reduces oxidative stress and inflammation in atherosclerosis.

5.
Front Plant Sci ; 13: 908035, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275577

RESUMEN

Soil water repellency (SWR) is a physical phenomenon whereby water cannot penetrate or has difficulty penetrating the soil surface. There are many factors involved in its occurrence, but the main factors controlling its emergence in loess remain unclear. In this work, we have studied numerous physicochemical and biological factors functioning in different dominant vegetations (Pinus tabulaeformis Carr., Robinia pseudoacacia L., and Hippophae rhamnoides L.) in a loess hilly region by gas chromatography-mass spectrometry (GC-MS) and high-throughput sequencing techniques. We observed that more than 75% of the soils under Robinia and Hippophae are categorized as slightly or strongly water repellent, while nearly 50% of the soils under Pinus are categorized as severely to extremely water repellent. The relative concentrations of total free lipids in the soil in the same water-repellency class were Pinus > Robinia > Hippophae, where fatty acids, alkanols, and sterols were positively correlated with SWR, whereas alkanes were not. For the abundance and diversity index of bacterial and fungal communities, the three species ranked in the following order: Robinia ≈ Hippophae > Pinus. Thus, solvent-extractable polar waxes were indicated to be better preserved in water-repellent soils under Pinus due to lower microbial diversity than Robinia and Hippophae. Here, we demonstrate polar waxes to be the principal factor controlling SWR. Moreover, the dominant phyla of fungi varied greatly than those of bacteria under three vegetation types. Correlation analysis showed that the abundance of Actinobacteria in dominant bacteria increased with SWR. Nonmetric multidimensional scaling suggested the fungal community in different water-repellent soils under Pinus to vary more than those under Robinia and Hippophae. The indicator species mainly belonged to Actinobacteria in bacteria and Basidiomycota in fungi at the phylum level; this finding was further supported by the linear discriminant analysis (LDA) effect size (LEfSe). Additionally, GC-MS identified a small amount of ergosterol, a specific biomarker of fungi under Pinus. These pieces of evidence collectively reveal that severe to extreme SWR occurs under Pinus and appears to be the most influenced by fungi and actinomycetes when the topsoil is close to air drying. However, there is a need for further testing on different plant species or land use.

6.
Gene ; 814: 146116, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34942321

RESUMEN

MYC transcriptional factors are members of the bHLH (basic helix-loop-helix) superfamily, and play important roles in plant growth, biological and abiotic stress. Recent studies have revealed that some MYCs are involved in the synthesis of sulfur-containing secondary metabolites. Cabbage, as a typical sulfur-loving crop and rich in sulfur-containing secondary metabolites, the regulatory relationship between sulfur stress and MYC gene family, related reports are relatively rare. In this study, we conducted the first genome-wide analysis of the MYC transcription factor family of cabbage and identified 17 BoMYC genes. Homology of the 17 BoMYC genes, 12 Arabidopsis, 12 Chinese cabbage, 8 wheat and 21 maize MYC were analyzed using the phylogenetic analysis. Meanwhile, chromosome locations, physical and chemical characteristics, gene structures, conserved motif, cis-element, specific expression in different tissues were studied. Finally, we analyzed the expression of the BoMYC gene under sulfur stress and its GO annotation and KEGG enrichment analysis, determined the expression of the BoMYC gene under hormone treatment and the growth index, photosynthetic capacity and hormone content in the leaves. This study is of great significance for functional identification and revealed the effect of S on BoMYC transcription factors.


Asunto(s)
Brassica/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Azufre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Brassica/crecimiento & desarrollo , Brassica/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas , Secuencia Conservada , Genes de Plantas , Genoma de Planta , Familia de Multigenes , Fotosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , Estrés Fisiológico
7.
Plants (Basel) ; 10(10)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34685913

RESUMEN

Glucosinolates (GLS) are important anionic secondary metabolites that are rich in thiocyanin in cabbage, Brassica oleracea L. var. capitata. GLS are important in food flavor, plant antimicrobial activity, insect resistance, disease resistance, and human anti-cancer effects. Sulfur is an important raw material of GLS, directly affecting their synthesis. However, the mechanism of sulfur regulation of GLS biosynthesis in cabbage is unclear. In the present study, cabbage was treated with sulfur-free Hoagland nutrient solution (control; -S), and normal Hoagland nutrient solution (treatment; +S). Through joint transcriptomic and proteomic analyses, the effect of exogenous S on GLS synthesis was explored. S application induced GLS accumulation; especially, indole glycosides. Transcriptome analysis showed that +S treatment correlated positively with differentially expressed genes and proteins involved in amino acid biosynthesis, carbon metabolism, and plant hormone signal transduction. Compared with -S treatment, the mRNA expression of GLS synthesis genes (CYP, GSTU, UGT, and FMO) and those encoding transcription factors (RLK, MYB, AP2, bHLH, AUX/IAA, and WRKY) were upregulated significantly in the +S group. Combined transcriptome and proteome analysis suggested that the main pathway influenced by S during GLS synthesis in cabbage is amino acid biosynthesis. Moreover, S treatment activated GLS synthesis and accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA