Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 91: 117-127, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32172960

RESUMEN

Biological nitrogen removal process could be affected due to the presence of heavy metals owing to their toxicity and accumulation in the sludge. In this study, the impact of Cu2+ shock on a long-term nitritation operation was investigated in an air-lift reactor with self-recirculation. Both the dynamics of microbial community and inhibition kinetics under Cu2+ stress were ascertained. The results showed that Cu2+ exerted severe inhibition on nitritation performance of an air-lift reactor (ALR) at 25 mg/L. The corresponding NH4+-N removal efficiency decreased to below 50%, which was mainly due to the variation of microbial community structure, especially the inhibition of nitrifiers like Nitrosomonas (the relative abundance decreased from 30% to 1% after Cu2+ inhibition). Kinetic parameters were obtained and compared after fitting the Haldane model. The long-term Cu2+ stress on the ALR aggravated the ammonium affinity and the resistance to substrate self-inhibition of the nitritation sludge, but reduced the resistance to Cu2+ inhibition. Furthermore, Cu2+ acted as uncompetitive inhibitor on nitritation process. Our results provide new insights into the nitritation characteristics under long-term Cu2+ stress.


Asunto(s)
Compuestos de Amonio , Microbiota , Reactores Biológicos , Cinética , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado
2.
J Hazard Mater ; 435: 128957, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35490631

RESUMEN

Nitritation process with ammonia-oxidizing bacteria frequently suffers inhibition from heavy metals in industrial wastewater treatment. However, As(III), one of the most toxic metalloids, showed slight inhibition though the arsenic accumulation content in the sludge reached 91.8 mg L-1 in this study. Here, we combined long-term reactor operation with microbiological analyses to explore the slight inhibition mechanisms of As(III) on nitritation consortia. The results showed that no obvious changes induced by As(III) occurred in apparent characteristics and morphology of the nitritation consortia, whereas dosing As(III) induced shifts in the arsenic speciation and microbial community. 84.1% of As(III) was oxidized to As(V) in the acclimated sludge, decreasing the toxicity of As(III) to nitritation consortia. Insight to the microbial community, the relative abundances of Thermaceae and Phycisphaeraceae responsible for As(III) oxidation were increased to 7.4% and 6.6% under the stress of high-concentration As(III), respectively. Further, these increased arsenite-oxidizing bacteria probably accepted electron acceptor NO2- from ammonia-oxidizing bacteria to oxidize As(III). Our results indicated that microbial As(III) oxidation was the dominant detoxification pathway, providing new insights into nitritation characteristics under long-term As(III) stress.


Asunto(s)
Arsénico , Microbiota , Amoníaco/metabolismo , Arsénico/metabolismo , Arsénico/toxicidad , Bacterias/genética , Bacterias/metabolismo , Reactores Biológicos , Nitrógeno/metabolismo , Oxidación-Reducción , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología
3.
Sci Total Environ ; 760: 144311, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33341622

RESUMEN

Recovering nitrogen and phosphorus from waste water in the form of struvite is an effective way to recycle resources. The insufficient purity of the resulting struvite and the large loss of nitrogen and phosphorus are the challenges at present. Therefore, it is urgent to develop innovative method in struvite crystallization process for efficient nitrogen and phosphorus recovery. This study proposed a crystallization method to reduce the loss of nitrogen and phosphorus by a struvite fluidized bed reactor (FBR) with optimized structure and operation conditions. The properties of struvite obtained under various conditions in the reactor were studied, and the internal operating conditions of the reactor were simulated with COMSOL Multiphysics to verify the effectiveness of the reactor optimization. This reactor achieved stable operation under the conditions of N/P = 1:1 and pH = 9.0. The purity of struvite obtained reached 98.5%, the conversion rate of ammonia nitrogen reached 97.2%, and struvite crystals could grow to 84 µm within 24 h. The simulation results showed that the Venturi tubes installed at multiple locations increased the turbulent energy to 4 × 10-4 m2/s2, which greatly improved the mass transfer efficiency. The trajectory of the crystal particles was consistent with the fluid flow field, which promoted the purification and growth of the crystal. In general, the new FBR with enhanced external recirculation would be a very feasible way to improve crystal growth and crystal purification of struvite, and it could enhance the recovery efficiency of nitrogen and phosphorus with reduced cost.

4.
Water Environ Res ; 92(11): 1966-1974, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32108974

RESUMEN

Heavy metals such as Mn2+ are common contaminants in ammonium-rich wastewater. The information of Mn2+ effect on anammox process needs further investigation. The short- and long-term effects of Mn2+ on anammox were explored by anammox granular sludge. Batch tests showed that the half inhibition value (IC50 ) of Mn2+ was 4.83 mg/L. The anammox activity was severely inhibited in 0.5 hr under 15 mg/L Mn2+ . However, after long-term domestication by increasing the concentration of Mn2+ , both the low-load reactor (R1) and the high-load reactor (R2) performed well, achieving volumetric nitrogen removal rate of 6.36 kg/(m3 ·d) and 13.99 kg/(m3 ·d), respectively. The average ammonium and nitrite removal efficiency of both reactors under 200 mg/L Mn still maintained above 90%. The results from long-term reactors' operation showed that the serious inhibition effect indicated by the batch test was significantly exaggerated. The granules became dispersed after long-term operation in the high-load reactor (R2) which might be correlated to the high osmotic pressure caused by high Mn2+ load, and the mechanism needs to be investigated further. PRACTITIONER POINTS: The half inhibition value of Mn2+ on anammox sludge was 4.83 mg/L in batch experiment. 200 mg/L Mn2+ did not cause any inhibition on anammox process during long-term operation. Granular sludge is finer under high nitrogen loads with 200 mg/L Mn stress.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Domesticación , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado
5.
Bioresour Technol ; 283: 138-147, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30903820

RESUMEN

The toxicity of hexavalent chromium (Cr(VI)) is one of the challenges in implementing Anammox process to ammonium-rich wastewater treatment. However, the response of Anammox process to Cr(VI) stress and the inhibition mechanism remain unclear. Here, two Anammox UASB reactors were operated for 285 days under different Cr(VI) stresses. The results showed Anammox performance was not affected at low Cr(VI) concentration (i.e., 0-0.5 mg L-1), but was severely inhibited at 0.8 mg L-1. Attempts to domesticate Anammox process to higher Cr(VI) by lowering nitrogen loading rate were failed. Examination of Cr(VI) fate showed the occurrence of extracellular and intracellular Cr(VI) reduction to Cr(III). The inhibition was ascribed to the significant intracellular Cr(VI) reduction, accounting for 99.78% of the total Cr(VI) reduction. Moreover, under long-term Cr(VI) exposure, most nitrite was oxidized to nitrate. But microbial community showed no enrichment of Cr(VI) reducing bacteria and other nitrogen transformation-related bacteria.


Asunto(s)
Compuestos de Amonio/metabolismo , Cromo/farmacología , Nitritos/metabolismo , Anaerobiosis/efectos de los fármacos , Nitratos/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción
6.
Sci Total Environ ; 657: 1227-1236, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677889

RESUMEN

High adsorption capacity, good biocompatibility and low cost are highly demanded for biofilter used in ammonium-rich wastewater treatment. In this study, we used SEM, BET, XRD and 16S rRNA to document the evidence for good performance in adsorption and biodegradation in aged refuse. Parallel experiment between raw and inert refuse showed ammonium adsorption occurred at the initial week, with the highest ammonium removal efficiency of 90.36%, but saturated during the subsequent long-term operation. Meanwhile, over 6months' operation of an aged refuse biofilter was conducted to confirm that nitrification was the main pathway of ammonium conversion. The maximum nitrogen loading rate could reach up to as high as 1.28kg/m3/d, with ammonium removal efficiency at 99%. Further, high nitrifier biodiversity were detected with 'Nitrosomonas' and 'Nitrospira' in domination in the refuse. However, Nitrospira would outcompete Nitrosomonas under the oxygen limiting condition and resulted in the failure of partial nitrification. The physicochemical and biological analysis show that biodegradation is the main ammonium conversion pathway, which is the critical finding of this work. This investigation would help to accelerate the application of the aged refuse process in ammonium-rich wastewater treatment.


Asunto(s)
Reactores Biológicos/microbiología , Nitrificación , Eliminación de Residuos Líquidos/métodos , Amoníaco , Biodegradación Ambiental , Biodiversidad , Filtración/instrumentación , Filtración/métodos , Residuos de Alimentos , Consorcios Microbianos/genética , Microscopía Electrónica de Rastreo , ARN Ribosómico 16S , Factores de Tiempo , Eliminación de Residuos Líquidos/instrumentación , Difracción de Rayos X
7.
Environ Sci Pollut Res Int ; 25(36): 36680-36692, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30377966

RESUMEN

The adsorption behavior of Zn2+ in four different biological sludge systems, i.e. activated sludge, denitrification sludge, short-cut nitrification sludge, and anammox granules, was investigated. The results indicated that all sludge samples possessed considerable potential for Zn2+ adsorption. Short-cut nitrification sludge possessed the highest Zn2+ maximum adsorption capacity (qm) of 36.4 mg g SS-1, which was much higher than other sludges applied (12.8-14.7 mg g SS-1). Besides, the adsorption rate for short-cut nitrification sludge was fastest among the four types of sludge after fitting with a pseudo-second-order rate equation. Comparing with the physicochemical properties of the four sludges, the soluble extracellular polymeric substances (EPS), especially soluble polysaccharide (PS), played a prior role in binding metal cations (i.e., Zn). The present study also showed that with less than 30% of Zn2+ trapped by EPS, 61.6-71.9% of Zn2+could be harvested directly by cells, indicating that the protecting capability by EPS was limited. Therefore, it is important to remove metal ions as early as possible if the activated sludge processes encountered high stress of heavy metal. Graphical abstract ᅟ.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas/química , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Zinc/análisis , Adsorción , Aerobiosis , Anaerobiosis , China , Desnitrificación , Modelos Teóricos , Nitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA