Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 23(1): 29, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243220

RESUMEN

BACKGROUND: In 2015, Tanzania National Malaria Control Programme (NMCP) established a longitudinal malaria vector entomological surveillance (MVES). The MVES is aimed at a periodical assessment of malaria vector composition and abundance, feeding and resting behaviours, and Plasmodium falciparum infection in different malaria epidemiological strata to guide the NMCP on the deployment of appropriate malaria vector interventions. This work details the dynamics of malaria vector composition and transmission in different malaria epidemiological strata. METHODS: The MVES was conducted from 32 sentinel district councils across the country. Mosquitoes were collected by the trained community members and supervised by the NMCP and research institutions. Three consecutive night catches (indoor collection with CDC light trap and indoor/outdoor collection using bucket traps) were conducted monthly in three different households selected randomly from two to three wards within each district council. Collected mosquitoes were sorted and morphologically identified in the field. Thereafter, the samples were sent to the laboratory for molecular characterization using qPCR for species identification and detection of P. falciparum infections (sporozoites). ELISA technique was deployed for blood meal analysis from samples of blood-fed mosquitoes to determine the blood meal indices (BMI). RESULTS: A total of 63,226 mosquitoes were collected in 32 district councils from January 2017 to December 2021. Out of which, 39,279 (62%), 20,983 (33%) and 2964 (5%) were morphologically identified as Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l., and as other Anopheles species, respectively. Out of 28,795 laboratory amplified mosquitoes, 13,645 (47%) were confirmed to be Anopheles arabiensis, 9904 (34%) as An. funestus sensu stricto (s.s.), and 5193 (19%) as An. gambiae s.s. The combined average entomological inoculation rates (EIR) were 0.46 (95% CI 0.028-0.928) for An. gambiae s.s., 0.836 (95% CI 0.138-1.559) for An. arabiensis, and 0.58 (95% CI 0.165-0.971) for An. funestus s.s. with variations across different malaria transmission strata. Anopheles funestus s.s. and An. arabiensis were predominant in the Lake and South-Eastern zones, respectively, mostly in high malaria transmission areas. Monthly mosquito densities displayed seasonal patterns, with two peaks following the rainy seasons, varying slightly across species and district councils. CONCLUSION: Anopheles arabiensis remains the predominant vector species followed by An. funestus s.s. in the country. Therefore, strengthening integrated vector management including larval source management is recommended to address outdoor transmission by An. arabiensis to interrupt transmission particularly where EIR is greater than the required elimination threshold of less than one (< 1) to substantially reduce the prevalence of malaria infection.


Asunto(s)
Anopheles , Clorfentermina/análogos & derivados , Malaria Falciparum , Malaria , Animales , Humanos , Malaria/prevención & control , Plasmodium falciparum , Tanzanía/epidemiología , Mosquitos Vectores , Conducta Alimentaria , Malaria Falciparum/prevención & control
2.
Malar J ; 23(1): 8, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178145

RESUMEN

Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA.


Asunto(s)
Malaria , Control de Mosquitos , Animales , Estados Unidos , Malaria/epidemiología , África del Sur del Sahara , Ecología , Vectores de Enfermedades , Mosquitos Vectores
3.
Malar J ; 22(1): 293, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789435

RESUMEN

BACKGROUND: Strengthening malaria control activities in Tanzania has dramatically declined human malaria infections. However, there is an increasing epidemiological shift in the burden on school-age children. The underlying causes for such an epidemiological shift remain unknown in this context. This study explored activities and behaviours that could increase the vulnerability of school-age children to transmission risk to provide insight into protection gap with existing interventions and opportunities for supplementary interventions. METHODS: This cross-sectional study conducted twenty-four focus group discussions (FGDs) in three districts of Rufiji, Kibiti and Kilwa in south-eastern Tanzania. Sixteen FGDs worked with school-age children (13 to 18 years) separating girls and boys and eight FGDs with their parents in mixed-gender groups. A total of 205 community members participated in FGDs across the study area. Of them, 72 participants were parents, while 133 were school-age children (65 boys and 68 girls). RESULTS: Routine domestic activities such as fetching water, washing kitchen utensils, cooking, and recreational activities such as playing and watching television and studying were the reported activities that kept school-age children outdoors early evening to night hours (between 18:00 and 23:00). Likewise, the social and cultural events including initiation ceremonies and livelihood activities also kept this age group outdoors from late evening to early night and sometimes past midnight hours. Parents migrating to farms from December to June, leaving behind school-age children unsupervised affecting their net use behaviour plus spending more time outdoors at night, and the behaviour of children sprawling legs and hands while sleeping inside treated bed nets were identified as potential risks to infectious mosquito bites. CONCLUSION: The risky activities, behaviours, and social events mostly occurring outdoors might increase school-age children's vulnerability to malaria infections. The findings provide preliminary insight on potential risk factors for persisting transmission. Further studies to quantify the risk behaviour and activities are recommended to establish the magnitude and anticipated impact on supplementary control strategies to control infection in school-age children.


Asunto(s)
Malaria , Masculino , Femenino , Humanos , Niño , Adolescente , Tanzanía/epidemiología , Estudios Transversales , Malaria/epidemiología , Malaria/prevención & control , Asunción de Riesgos , Sueño , Control de Mosquitos
4.
Malar J ; 20(1): 123, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653355

RESUMEN

BACKGROUND: Larval source management was historically one of the most effective malaria control methods but is now widely deprioritized in Africa, where insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are preferred. However, in Tanzania, following initial successes in urban Dar-es-Salaam starting early-2000s, the government now encourages larviciding in both rural and urban councils nationwide to complement other efforts; and a biolarvicide production-plant has been established outside the commercial capital. This study investigated key obstacles and opportunities relevant to effective rollout of larviciding for malaria control, with a focus on the meso-endemic region of Morogoro, southern Tanzania. METHODS: Key-informants were interviewed to assess awareness and perceptions regarding larviciding among designated health officials (malaria focal persons, vector surveillance officers and ward health officers) in nine administrative councils (n = 27). Interviewer-administered questionnaires were used to assess awareness and perceptions of community members in selected areas regarding larviciding (n = 490). Thematic content analysis was done and descriptive statistics used to summarize the findings. RESULTS: A majority of malaria control officials had participated in larviciding at least once over the previous three years. A majority of community members had neutral perceptions towards positive aspects of larviciding, but overall support for larviciding was high, although several challenges were expressed, notably: (i) insufficient knowledge for identifying relevant aquatic habitats of malaria vectors and applying larvicides, (ii) inadequate monitoring of programme effectiveness, (iii) limited financing, and (iv) lack of personal protective equipment. Although the key-informants reported sensitizing local communities, most community members were still unaware of larviciding and its potential. CONCLUSIONS: The larviciding programme was widely supported by both communities and malaria control officials, but there were gaps in technical knowledge, implementation and public engagement. To improve overall impact, it is important to: (i) intensify training efforts, particularly for identifying habitats of important vectors, (ii) adopt standard technical principles for applying larvicides or larval source management, (iii) improve financing for local implementation and (iv) improve public engagement to boost community awareness and participation. These lessons could also be valuable for other malaria endemic areas wishing to deploy larviciding for malaria control or elimination.


Asunto(s)
Anopheles , Malaria/prevención & control , Control de Mosquitos/organización & administración , Participación de los Interesados , Animales , Anopheles/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Gobierno Local , Mosquitos Vectores , Tanzanía
5.
Malar J ; 20(1): 134, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676493

RESUMEN

BACKGROUND: Different forms of mosquito modifications are being considered as potential high-impact and low-cost tools for future malaria control in Africa. Although still under evaluation, the eventual success of these technologies will require high-level public acceptance. Understanding prevailing community perceptions of mosquito modification is, therefore, crucial for effective design and implementation of these interventions. This study investigated community perceptions regarding genetically-modified mosquitoes (GMMs) and their potential for malaria control in Tanzanian villages where no research or campaign for such technologies has yet been undertaken. METHODS: A mixed-methods design was used, involving: (i) focus group discussions (FGD) with community leaders to get insights on how they frame and would respond to GMMs, and (ii) structured questionnaires administered to 490 community members to assess awareness, perceptions and support for GMMs for malaria control. Descriptive statistics were used to summarize the findings and thematic content analysis was used to identify key concepts and interpret the findings. RESULTS: Nearly all survey respondents were unaware of mosquito modification technologies for malaria control (94.3%), and reported no knowledge of their specific characteristics (97.3%). However, community leaders participating in FGDs offered a set of distinctive interpretive frames to conceptualize interventions relying on GMMs for malaria control. The participants commonly referenced their experiences of cross-breeding for selecting preferred traits in domestic plants and animals. Preferred GMMs attributes included the expected reductions in insecticide use and human labour. Population suppression approaches, requiring as few releases as possible, were favoured. Common concerns included whether the GMMs would look or behave differently than wild mosquitoes, and how the technology would be integrated into current malaria control policies. The participants emphasised the importance and the challenge of educating and engaging communities during the technology development. CONCLUSIONS: Understanding how communities perceive and interpret novel technologies is crucial to the design and effective implementation of new vector control programmes. This study offers vital clues on how communities with no prior experience of modified mosquitoes might conceptualize or respond to such technologies when deployed in the context of malaria control programmes. Drawing upon existing interpretive frames and locally-resonant analogies when deploying such technologies may provide a basis for more durable public support in the future.


Asunto(s)
Animales Modificados Genéticamente/psicología , Anopheles/fisiología , Control de Enfermedades Transmisibles/organización & administración , Conocimientos, Actitudes y Práctica en Salud , Malaria/prevención & control , Mosquitos Vectores/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Percepción , Tanzanía , Adulto Joven
6.
Malar J ; 19(1): 418, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33218346

RESUMEN

BACKGROUND: Host preference is a critical determinant of human exposure to vector-borne infections and the impact of vector control interventions. Widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) across sub-Saharan Africa, which protect humans against mosquitoes, may select for altered host preference traits of malaria vectors over the long term. Here, the host preferences of Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) were experimentally assessed in the field, using direct host-preference assays in two distinct ecological settings in Tanzania. METHODS: Eight Ifakara Tent Trap (ITT), four baited with humans and four with bovine calves, were simultaneously used to catch malaria vectors in open field sites in urban and rural Tanzania. The numbers of mosquitoes collected in human-baited traps versus calf-baited traps were used to estimate human feeding preference for each site's vector species. RESULTS: The estimated proportion [95% confidence interval (CI)] of mosquitoes attacking humans rather than cattle was 0.60 [0.40, 0.77] for An. arabiensis in the rural setting and 0.61 [0.32, 0.85] for An. gambiae s.s. in the urban setting, indicating no preference for either host in both cases (P = 0.32 and 0.46, respectively) and no difference in preference between the two (Odds Ratio (OR) [95%] = 0.95 [0.30, 3.01], P = 0.924). However, only a quarter of An. arabiensis in the urban setting attacked humans (0.25 [0.09, 0.53]), indicating a preference for cattle that approached significance (P = 0.08). Indeed, urban An. arabiensis were less likely to attack humans rather than cattle when compared to the same species in the rural setting (OR [95%] = 0.21 [0.05, 0.91], P = 0.037). CONCLUSION: Urban An. arabiensis had a stronger preference for cattle than the rural population and urban An. gambiae s.s. showed no clear preference for either humans or cattle. In the urban setting, both species exhibited stronger tendencies to attack cattle than previous studies of the same species in rural contexts. Cattle keeping may, therefore, particularly limit the impact of human-targeted vector control interventions in Dar es Salaam and perhaps in other African towns and cities.


Asunto(s)
Anopheles/fisiología , Mosquitos Vectores/fisiología , Animales , Conducta Alimentaria , Humanos , Mordeduras y Picaduras de Insectos/epidemiología , Malaria/transmisión , Tanzanía/epidemiología , Población Urbana/estadística & datos numéricos
7.
Malar J ; 19(1): 148, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32268907

RESUMEN

BACKGROUND: Outdoor and early evening mosquito biting needs to be addressed if malaria elimination is to be achieved. While indoor-targeted interventions, such as insecticide-treated nets and indoor residual spraying, remain essential, complementary approaches that tackle persisting outdoor transmission are urgently required to maximize the impact. Major malaria vectors principally bite human hosts around the feet and ankles. Consequently, this study investigated whether sandals treated with efficacious spatial repellents can protect against outdoor biting mosquitoes. METHODOLOGY: Sandals affixed with hessian bands measuring 48 cm2 treated with 0.06 g, 0.10 g and 0.15 g of transfluthrin were tested in large cage semi-field and full field experiments. Sandals affixed with hessian bands measuring 240 cm2 and treated with 0.10 g and 0.15 g of transfluthrin were also tested semi field experiments. Human landing catches (HLC) were used to assess reduction in biting exposure by comparing proportions of mosquitoes landing on volunteers wearing treated and untreated sandals. Sandals were tested against insectary reared Anopheles arabiensis mosquitoes in semi-field experiments and against wild mosquito species in rural Tanzania. RESULTS: In semi-field tests, sandals fitted with hessian bands measuring 48 cm2 and treated with 0.15 g, 0.10 g and 0.06 g transfluthrin reduced mosquito landings by 45.9%, (95% confidence interval (C.I.) 28-59%), 61.1% (48-71%), and 25.9% (9-40%), respectively compared to untreated sandals. Sandals fitted with hessian bands measuring 240 cm2 and treated with 0.15 g and 0.10 g transfluthrin reduced mosquito landings by 59% (43-71%) and 64% (48-74%), respectively. In field experiments, sandals fitted with hessian bands measuring 48 cm2 and treated with 0.15 g transfluthrin reduced mosquito landings by 70% (60-76%) against Anopheles gambiae sensu lato, and 66.0% (59-71%) against all mosquito species combined. CONCLUSION: Transfluthrin-treated sandals conferred significant protection against mosquito bites in semi-field and field settings. Further evaluation is recommended for this tool as a potential complementary intervention against malaria. This intervention could be particularly useful for protecting against outdoor exposure to mosquito bites. Additional studies are necessary to optimize treatment techniques and substrates, establish safety profiles and determine epidemiological impact in different settings.


Asunto(s)
Anopheles , Ciclopropanos , Fluorobencenos , Mordeduras y Picaduras de Insectos/prevención & control , Repelentes de Insectos , Control de Mosquitos , Zapatos , Adulto , Animales , Humanos , Masculino , Tanzanía , Adulto Joven
8.
Malar J ; 19(1): 164, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32321534

RESUMEN

BACKGROUND: Malaria control in Tanzania currently relies primarily on long-lasting insecticidal nets and indoor residual spraying, alongside effective case management and behaviour change communication. This study explored opinions of key stakeholders on the national progress towards malaria elimination, the potential of currently available vector control interventions in helping achieve elimination by 2030, and the need for alternative interventions that could be used to supplement malaria elimination efforts in Tanzania. METHODS: In this exploratory qualitative study, Focus group discussions were held with policy-makers, regulators, research scientists and community members. Malaria control interventions discussed were: (a) improved housing, (b) larval source management, (c) mass drug administration (MDA) with ivermectin to reduce vector densities, (d) release of modified mosquitoes, including genetically modified or irradiated mosquitoes, (e) targeted spraying of mosquito swarms, and (f) spatial repellents. RESULTS: Larval source management and spatial repellents were widely supported across all stakeholder groups, while insecticide-spraying of mosquito swarms was the least preferred. Support for MDA with ivermectin was high among policy makers, regulators and research scientists, but encountered opposition among community members, who instead expressed strong support for programmes to improve housing for poor people in high transmission areas. Policy makers, however, challenged the idea of government-supported housing improvement due to its perceived high costs. Techniques of mosquito modification, specifically those involving gene drives, were viewed positively by community members, policy makers and regulators, but encountered a high degree of scepticism among scientists. Overall, policy-makers, regulators and community members trusted scientists to provide appropriate advice for decision-making. CONCLUSION: Stakeholder opinions regarding alternative malaria interventions were divergent except for larval source management and spatial repellents, for which there was universal support. MDA with ivermectin, housing improvement and modified mosquitoes were also widely supported, though each faced concerns from at least one stakeholder group. While policy-makers, regulators and community members all noted their reliance on scientists to make informed decisions, their reasoning on the benefits and disadvantages of specific interventions included factors beyond technical efficiency. This study suggests the need to encourage and strengthen dialogue between research scientists, policy makers, regulators and communities regarding new interventions.


Asunto(s)
Erradicación de la Enfermedad/métodos , Malaria/prevención & control , Opinión Pública , Participación de los Interesados , Tanzanía
9.
Malar J ; 19(1): 292, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32799857

RESUMEN

BACKGROUND: In 2015, a China-UK-Tanzania tripartite pilot project was implemented in southeastern Tanzania to explore a new model for reducing malaria burden and possibly scaling-out the approach into other malaria-endemic countries. The 1,7-malaria Reactive Community-based Testing and Response (1,7-mRCTR) which is a locally-tailored approach for reporting febrile malaria cases in endemic villages was developed to stop transmission and Plasmodium life-cycle. The (1,7-mRCTR) utilizes existing health facility data and locally trained community health workers to conduct community-level testing and treatment. METHODS: The pilot project was implemented from September 2015 to June 2018 in Rufiji District, southern Tanzania. The study took place in four wards, two with low incidence and two with a higher incidence. One ward of each type was selected for each of the control and intervention arms. The control wards implemented the existing Ministry of Health programmes. The 1,7-mRCTR activities implemented in the intervention arm included community testing and treatment of malaria infection. Malaria case-to-suspect ratios at health facilities (HF) were aggregated by villages, weekly to identify the village with the highest ratio. Community-based mobile test stations (cMTS) were used for conducting mass testing and treatment. Baseline (pre) and endline (post) household surveys were done in the control and intervention wards to assess the change in malaria prevalence measured by the interaction term of 'time' (post vs pre) and arm in a logistic model. A secondary analysis also studied the malaria incidence reported at the HFs during the intervention. RESULTS: Overall the 85 rounds of 1,7-mRCTR conducted in the intervention wards significantly reduced the odds of malaria infection by 66% (adjusted OR 0.34, 95% CI 0.26,0.44, p < 0001) beyond the effect of the standard programmes. Malaria prevalence in the intervention wards declined by 81% (from 26% (95% CI 23.7, 7.8), at baseline to 4.9% (95% CI 4.0, 5.9) at endline). In villages receiving the 1,7-mRCTR, the short-term case ratio decreased by over 15.7% (95% CI - 33, 6) compared to baseline. CONCLUSION: The 1,7-mRCTR approach significantly reduced the malaria burden in the areas of high transmission in rural southern Tanzania. This locally tailored approach could accelerate malaria control and elimination efforts. The results provide the impetus for further evaluation of the effectiveness and scaling up of this approach in other high malaria burden countries in Africa, including Tanzania.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Agentes Comunitarios de Salud/estadística & datos numéricos , Instituciones de Salud/estadística & datos numéricos , Malaria/prevención & control , Antimaláricos/uso terapéutico , Control de Enfermedades Transmisibles/estadística & datos numéricos , Incidencia , Malaria/epidemiología , Malaria/parasitología , Proyectos Piloto , Prevalencia , Población Rural/estadística & datos numéricos , Tanzanía/epidemiología
10.
Malar J ; 17(1): 452, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518365

RESUMEN

BACKGROUND: A nationwide, school, malaria survey was implemented to assess the risk factors of malaria prevalence and bed net use among primary school children in mainland Tanzania. This allowed the mapping of malaria prevalence at council level and assessment of malaria risk factors among school children. METHODS: A cross-sectional, school, malaria parasitaemia survey was conducted in 25 regions, 166 councils and 357 schools in three phases: (1) August to September 2014; (2) May 2015; and, (3) October 2015. Children were tested for malaria parasites using rapid diagnostic tests and were interviewed about household information, parents' education, bed net indicators as well as recent history of fever. Multilevel mixed effects logistic regression models were fitted to estimate odds ratios of risk factors for malaria infection and for bed net use while adjusting for school effect. RESULTS: In total, 49,113 children were interviewed and tested for malaria infection. The overall prevalence of malaria was 21.6%, ranging from < 0.1 to 53% among regions and from 0 to 76.4% among councils. The malaria prevalence was below 5% in 62 of the 166 councils and above 50% in 18 councils and between 5 and 50% in the other councils. The variation of malaria prevalence between schools was greatest in regions with a high mean prevalence, while the variation was marked by a few outlying schools in regions with a low mean prevalence. Overall, 70% of the children reported using mosquito nets, with the highest percentage observed among educated parents (80.7%), low land areas (82.7%) and those living in urban areas (82.2%). CONCLUSIONS: The observed prevalence among school children showed marked variation at regional and sub-regional levels across the country. Findings of this survey are useful for updating the malaria epidemiological profile and for stratification of malaria transmission by region, council and age groups, which is essential for guiding resource allocation, evaluation and prioritization of malaria interventions.


Asunto(s)
Malaria/epidemiología , Parasitemia/epidemiología , Estudiantes/estadística & datos numéricos , Adolescente , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Masculino , Prevalencia , Factores de Riesgo , Instituciones Académicas , Tanzanía/epidemiología
11.
Malar J ; 17(1): 292, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30103755

RESUMEN

BACKGROUND: Malaria is an important public health problem in Tanzania. The latest national malaria data suggests rebound of the disease in the country. Anopheles arabiensis, a mosquito species renowned for its resilience against existing malaria vector control measures has now outnumbered the endophagic and anthrophilic Anopheles gambiae sensu stricto as the dominant vector. Vector control measures, prophylaxis and case management with artemisinin-based combination therapy (ACT) are the main control interventions. This paper presents and discusses the main findings from a baseline household survey that was conducted to determine malaria parasite prevalence and associated risk exposures prior to piloting the T3-initiative of World Health Organization integrated with Chinese malaria control experience aimed at additional reduction of malaria in the area. METHODS: The study was conducted from 4 sub-district divisions in Rufiji District, southern Tanzania: Ikwiriri, Kibiti, Bungu, and Chumbi. Malaria transmission is endemic in the area. It involved 2000 households that were randomly selected from a list of all households that had been registered from the area. Residents in sampled households were interviewed on a range of questions that included use of long-lasting insecticidal nets (LLINs) the night prior to the interview and indicators of socio-economic status. Blood drops were also collected on blood slides that were examined for malaria parasites using microscopes. RESULTS: The study observed an average malaria parasite prevalence of 13% across the selected site. Its distribution was 5.6, 12.8, 16.7, and 18% from Ikwiriri, Kibiti, Bungu, and Chumbi wards, respectively. The corresponding LLIN use discovered were 57.5% over the district. The highest usage was observed from Ikwiriri at 69.6% and the lowest from Bungu at 46.3%. A statistically significant variation in parasitaemia between socio-economic quintiles was observed from the study. Males were more parasitaemic than females (p value = 0.000). DISCUSSION AND CONCLUSION: The findings have been discussed in the light of results from Tanzania Demographic and Health Survey-Malaria Indicator Survey, 2015-2016 and other related studies, together with goals and targets set for malaria control. The paper also discusses the observed parasitaemia in relation to reported LLIN use and its distribution by some important factors as they were explored from the study. It has been concluded that malaria burden is now concentrated on the fringes of the settlements where the poorest section of the population is concentrated and LLIN usage is lower than the national average and targets set by national and global malaria control initiatives.


Asunto(s)
Control de Enfermedades Transmisibles/organización & administración , Malaria/epidemiología , Adolescente , Adulto , Anciano , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Malaria/parasitología , Masculino , Persona de Mediana Edad , Proyectos Piloto , Prevalencia , Valores de Referencia , Factores de Riesgo , Población Rural/estadística & datos numéricos , Tanzanía/epidemiología , Adulto Joven
13.
Malar J ; 15(1): 288, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27216734

RESUMEN

BACKGROUND: In the Tanzanian city of Dar es Salaam, high coverage of long-lasting insecticidal nets (LLINs), larvicide application (LA) and mosquito-proofed housing, was complemented with improved access to artemisinin-based combination therapy and rapid diagnostic tests by the end of 2012. METHODS: Three rounds of city-wide, cluster-sampled cross-sectional surveys of malaria parasite infection status, spanning 2010 to 2012, were complemented by two series of high-resolution, longitudinal surveys of vector density. RESULTS: Larvicide application using a granule formulation of Bacillus thuringiensis var. israelensis (Bti) had no effect upon either vector density (P = 0.820) or infection prevalence (P = 0.325) when managed by a private-sector contractor. Infection prevalence rebounded back to 13.8 % in 2010, compared with <2 % at the end of a previous Bti LA evaluation in 2008. Following transition to management by the Ministry of Health and Social Welfare (MoHSW), LA consistently reduced vector densities, first using the same Bti granule in early 2011 [odds ratio (OR) (95 % confidence interval (CI)) = 0.31 (0.14, 0.71), P = 0.0053] and then a pre-diluted aqueous suspension formulation from mid 2011 onwards [OR (95 % CI) = 0.15 (0.07, 0.30), P â‰ª 0.000001]. While LA by MoHSW with the granule formulation was associated with reduced infection prevalence [OR (95 % CI) = 0.26 (0.12, 0.56), P = 0.00040], subsequent liquid suspension use, following a mass distribution to achieve universal coverage of LLINs that reduced vector density [OR (95 % CI) = 0.72 (0.51, 1.01), P = 0.057] and prevalence [OR (95 % CI) = 0.80 (0.69, 0.91), P = 0.0013], was not associated with further prevalence reduction (P = 0.836). Sleeping inside houses with complete window screens only reduced infection risk [OR (95 % CI) = 0.71 (0.62, 0.82), P = 0.0000036] if the evenings and mornings were also spent indoors. Furthermore, infection risk was only associated with local vector density [OR (95 % CI) = 6.99 (1.12, 43.7) at one vector mosquito per trap per night, P = 0.037] among the minority (14 %) of households lacking screening. Despite attenuation of malaria transmission and immunity, 88 % of infected residents experienced no recent fever, only 0.4 % of these afebrile cases had been treated for malaria, and prevalence remained high (9.9 %) at the end of the study. CONCLUSIONS: While existing vector control interventions have dramatically attenuated malaria transmission in Dar es Salaam, further scale-up and additional measures to protect against mosquito bites outdoors are desirable. Accelerated elimination of chronic human infections persisting at high prevalence will require active, population-wide campaigns with curative drugs.


Asunto(s)
Transmisión de Enfermedad Infecciosa/prevención & control , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Control de Mosquitos/métodos , Adolescente , Adulto , África/epidemiología , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Malaria Falciparum/transmisión , Masculino , Persona de Mediana Edad , Prevalencia , Tanzanía/epidemiología , Adulto Joven
15.
Malar J ; 13: 245, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24964790

RESUMEN

BACKGROUND: Community-based service delivery is vital to the effectiveness, affordability and sustainability of vector control generally, and to labour-intensive larval source management (LSM) programmes in particular. CASE DESCRIPTION: The institutional evolution of a city-level, community-based LSM programme over 14 years in urban Dar es Salaam, Tanzania, illustrates how operational research projects can contribute to public health governance and to the establishment of sustainable service delivery programmes. Implementation, management and governance of this LSM programme is framed within a nested set of spatially-defined relationships between mosquitoes, residents, government and research institutions that build upward from neighbourhood to city and national scales. DISCUSSION AND EVALUATION: The clear hierarchical structure associated with vertical, centralized management of decentralized, community-based service delivery, as well as increasingly clear differentiation of partner roles and responsibilities across several spatial scales, contributed to the evolution and subsequent growth of the programme. CONCLUSIONS: The UMCP was based on the principle of an integrated operational research project that evolved over time as the City Council gradually took more responsibility for management. The central role of Dar es Salaam's City Council in coordinating LSM implementation enabled that flexibility; the institutionalization of management and planning in local administrative structures enhanced community-mobilization and funding possibilities at national and international levels. Ultimately, the high degree of program ownership by the City Council and three municipalities, coupled with catalytic donor funding and technical support from expert overseas partners have enabled establishment of a sustainable, internally-funded programme implemented by the National Ministry of Health and Social Welfare and supported by national research and training institutes.


Asunto(s)
Malaria/prevención & control , Control de Mosquitos/métodos , Control de Mosquitos/organización & administración , Animales , Estudios de Casos y Controles , Humanos , Malaria/epidemiología , Tanzanía , Población Urbana
16.
Malar J ; 12: 124, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23577656

RESUMEN

BACKGROUND: The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. PRESENTATION OF THE HYPOTHESIS: Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. TESTING THE HYPOTHESIS: Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. IMPLICATIONS OF THE HYPOTHESIS: Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures.


Asunto(s)
Culicidae/fisiología , Vectores de Enfermedades , Conducta Alimentaria , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos/métodos , Animales , Biota , Culicidae/parasitología , Ecosistema , Humanos
17.
Bull Natl Res Cent ; 47(1): 17, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776799

RESUMEN

Background: Malaria rapid diagnostic tests (mRDTs) have played an important role in the early detection of clinical malaria in an endemic area. While several mRDTs are currently on the market, the availability of mRDTs with high sensitivity and specificity will merit the fight against malaria. We evaluated the field performance of a novel One Step Malaria (P.f/P.v) Tri-line and One Step Malaria (P.f) rapid test kits in Pwani, Tanzania. Methods: In a cross-sectional study conducted in Bagamoyo and Kibiti districts in Tanzania, symptomatic patients were tested using the SD BIOLINE, One Step Malaria (P.f/P.v) Tri-line and One Step Malaria (P.f) rapid test kits, microscope, and quantitative Polymerase Chain Reaction (qPCR). An additional qPCR assay was carried out to detect Histidine-Rich Protein 2 (HRP-2) gene deletion on mRDT negative but microscope and qPCR positive samples. Microscope results confirmed by qPCR were used for analysis, where qPCR was used as a reference method. Results: The sensitivity and specificity of One Step P.f/P.v Tri-line mRDTs were 96.0% (CI 93.5-97.7%) and 98.3% (CI 96.8-99.2%), respectively. One Step P.f mRDT had sensitivity and specificity of 95.2% (CI 92.5-97.1%) and 97.9% (CI 96.3-99.0%) respectively. Positive predictive value (PPV) was 97.6% (CI 95.4-98.7%) and negative predictive value (NPV) was 96.2% (CI 95.5-98.3%) for the One Step P.f/P.v Tri-line mRDTs respectively, while One Step P.f mRDT had positive predictive value (PPV) and negative predictive value (NPV) of 97.0% (CI 94.8-98.3%) and 96.7 (CI 94.9-97.9%) respectively. 9.8% (CI 7.84-11.76) of all samples tested and reported to be malaria-negative by mRDT had HRP-2 gene deletion. Conclusion: One Step Malaria P.f/P.v Tri-line and One Step Malaria P.f rapid test kits have similar sensitivity and specificity as the standard mRDT that is currently in the market, demonstrating the potential to contribute in the fight against malaria in endemic settings. However, the identified malaria parasites population with HRP-2 gene deletion pose a threat to the current mRDT usability in the field and warrants further investigations.

18.
Infect Dis Poverty ; 12(1): 116, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38105258

RESUMEN

BACKGROUND: Progress in malaria control has stalled in recent years and innovative surveillance and response approaches are needed to accelerate malaria control and elimination efforts in endemic areas of Africa. Building on a previous China-UK-Tanzania pilot study on malaria control, this study aimed to assess the impact of the 1,7-malaria Reactive Community-Based Testing and Response (1,7-mRCTR) approach implemented over two years in three districts of Tanzania. METHODS: The 1,7-mRCTR approach provides community-based malaria testing via rapid diagnostic tests and treatment in villages with the highest burden of malaria incidence based on surveillance data from health facilities. We used a difference-in-differences quasi-experimental design with linear probability models and two waves of cross-sectional household surveys to assess the impact of 1,7-mRCTR on malaria prevalence. We conducted sensitivity analyses to assess the robustness of our results, examined how intervention effects varied in subgroups, and explored alternative explanations for the observed results. RESULTS: Between October 2019 and September 2021, 244,771 community-based malaria rapid tests were completed in intervention areas, and each intervention village received an average of 3.85 rounds of 1-7mRCTR. Malaria prevalence declined from 27.4% at baseline to 11.7% at endline in the intervention areas and from 26.0% to 16.0% in the control areas. 1,7-mRCTR was associated with a 4.5-percentage-point decrease in malaria prevalence (95% confidence interval: - 0.067, - 0.023), equivalent to a 17% reduction from the baseline. In Rufiji, a district characterized by lower prevalence and where larviciding was additionally provided, 1,7-mRCTR was associated with a 63.9% decline in malaria prevalence. CONCLUSIONS: The 1,7-mRCTR approach reduced malaria prevalence. Despite implementation interruptions due to the COVID-19 pandemic and supply chain challenges, the study provided novel evidence on the effectiveness of community-based reactive approaches in moderate- to high-endemicity areas and demonstrated the potential of South-South cooperation in tackling global health challenges.


Asunto(s)
Malaria , Pandemias , Humanos , Prevalencia , Tanzanía/epidemiología , Estudios Transversales , Proyectos Piloto , Malaria/epidemiología , Malaria/prevención & control
19.
Malar J ; 11: 172, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22624853

RESUMEN

BACKGROUND: More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. METHODOLOGY: An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. RESULTS: Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)] = 0.079 [0.051, 0.121], P < 0.001 for Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P < 0.001 for Culicines) but only moderately differed from QA surveys with the same trap (0.536 [0.406,0.617], P = 0.001 and 0.747 [0.677,0.824], P < 0.001, for An. gambiae or Culex respectively). Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught) and cost-effective (153US$ versus 187US$ per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373). DISCUSSION AND CONCLUSION: CB trapping approaches could be improved with more sensitive traps, but already offer a practical, safe and affordable system for routine programmatic mosquito surveillance and clusters could be distributed across entire countries by adapting the sample submission and quality assurance procedures accordingly.


Asunto(s)
Participación de la Comunidad/métodos , Culicidae/crecimiento & desarrollo , Vectores de Enfermedades , Entomología/métodos , Animales , Culicidae/clasificación , Humanos , Control de Mosquitos/métodos , Vigilancia en Salud Pública/métodos , Sensibilidad y Especificidad , Tanzanía , Clima Tropical
20.
PLoS One ; 17(8): e0273490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36026502

RESUMEN

BACKGROUND: The resistance to insecticides among malaria vectors poses a global challenge in the efforts towards malaria elimination. This calls for an addition of larval control methods such as biolarviciding. However, the implementation of biolarviciding in Tanzania has been very low. Therefore, this study explored factors affecting the implementation of biolarviciding in the councils of Southern Tanzania. METHODS: A mixed method descriptive qualitative, cross-sectional study design was used to collect data from 32 community leaders through key informant interviews and 12 Vectors Control Coordinators through in-depth interviews and questionnaire interviews and document review of implementation reports in 12 councils. Data were analysed using ATLAS.ti version 8, where content analysis was performed and SPSS for the quantitative data. RESULTS: The study found low implementation of biolarviciding intervention in 9 out of 12 (75%) surveyed councils. All Vector Control Coordinators reported a shortage of at least one type of resources: funds, trained personnel, transport, supply of biolarvicide, and equipment; low community involvement (50%) and low level of community participation 83.3% (10/12). CONCLUSION: This study highlights resource inadequacy and low community participation as main barriers to the implementation of biolarviciding. Availing adequate resources and strengthening community participation through involvement in all stages of implementation is crucial for successful and sustainable implementation.


Asunto(s)
Insecticidas , Malaria , Estudios Transversales , Humanos , Control de Mosquitos , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA