Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Rev Mol Cell Biol ; 24(9): 651-667, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37277471

RESUMEN

Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.


Asunto(s)
Actinas , Mitocondrias , Actinas/metabolismo , Mitocondrias/metabolismo , Forminas/metabolismo , Miosinas/metabolismo , Retículo Endoplásmico/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(15): e2109448119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394871

RESUMEN

Genetic studies of hippocampal granule neuron development have been used to elucidate cellular functions of Pten and Fmr1. While mutations in each gene cause neurodevelopmental disorders such as autism and fragile X syndrome, how Pten and Fmr1 function alone or together during normal development is not known. Moreover, Pten mRNA is bound by the fragile X mental retardation protein (FMRP) RNA binding protein, but how this physical interaction impinges on phosphatase and tensin homolog protein (PTEN) expression is not known. To understand the interaction of PTEN and FMRP, we investigated the dentate gyrus granule neuron development in Pten and Fmr1 knockout (KO) mice. Interestingly, heterozygosity of Pten restored Fmr1 KO cellular phenotypes, including dendritic arborization, and spine density, while PTEN protein expression was significantly increased in Fmr1 KO animals. However, complete deletion of both Pten and Fmr1 resulted in a dramatic increase in dendritic length, spine density, and spine length. In addition, overexpression of PTEN in Fmr1 KO Pten heterozygous background reduced dendritic length, arborization, spine density, and spine length including pS6 levels. Our findings suggest that PTEN levels are negatively regulated by FMRP, and some Fmr1 KO phenotypes are caused by dysregulation of PTEN protein. These observations provide evidence for the genetic interaction of PTEN and FMRP and a possible mechanistic basis for the pathogenesis of Fmr1-related fragile X neurodevelopmental disorders.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Fosfohidrolasa PTEN , Animales , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/genética , Neuronas/metabolismo , Neuronas/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
4.
Soft Matter ; 20(19): 3910-3922, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700098

RESUMEN

Using computer simulations in two dimensions (2D), we explore the structure and dynamics of a star polymer with three arms made of passive monomers immersed in a bath of active Brownian particles (ABPs). We analyze the conformational and dynamical changes of the polymer as a function of activity and packing fraction. We also study the process of motility induced phase separation (MIPS) in the presence of a star polymer, which acts as a mobile nucleation center. The presence of the polymer increases the growth rate of the clusters in comparison to a bath without the polymer. In particular, for low packing fraction, both nucleation and cluster growth are affected by the inclusion of the star polymer. Clusters grow in the vicinity of the star polymer, resulting in the star polymer experiencing a caged motion similar to a tagged ABP in the dense phase. Due to the topological constraints of the star polymers and clustering nearby, the conformational changes of the star polymer lead to interesting observations. Inter alia, we observe the shrinking of the arm with increasing activity along with a short-lived hairpin structure of one arm formed. We also see the transient pairing of two arms of the star polymer, while the third is largely separated at high activity. We hope our findings will help in understanding the behavior of active-passive mixtures, including biopolymers of complex topology in dense active suspensions.

5.
Soft Matter ; 20(26): 5258-5259, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888439

RESUMEN

Correction for 'A passive star polymer in a dense active bath: insights from computer simulations' by Ramanand Singh Yadav et al., Soft Matter, 2024, 20, 3910-3922, https://doi.org/10.1039/D4SM00144C.

6.
Soft Matter ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171512

RESUMEN

The understanding obtained by studies on the electrohydrodynamics (EHD) of single giant unilamellar vesicles (sGUVs) has contributed significantly towards a better comprehension of the response of biological cells to electric fields. This has subsequently helped in developing technologies such as cell dielectrophoresis and cell electroporation. For nucleate eukaryotic cells though, a vesicle-in-vesicle compound giant unilamellar vesicle (cGUV) is a more appropriate bio-mimic than a sGUV. In this work, we present an improvised method for the formation of cGUVs, wherein the electrical conductivities of the inner, annular and outer regions of the cGUVs can be modified. A comprehensive experimental study is presented on the EHD of these cGUVs under weak AC fields over a wide range of frequencies, and an encouraging agreement is observed between the experiments and earlier published theoretical studies on concentric cGUVs. The spherical, prolate or oblate spheroidal deformations of a cGUV under AC electric fields depend upon the membrane electromechanical properties as well as the magnitude and direction of the electric traction at the membrane produced by the Maxwell stress that varies with the relative timescales associated with the frequency of the applied AC electric field and that of the membrane charging time and the Maxwell-Wagner relaxation time. This work establishes cGUVs as appropriate bio-mimics for conducting EHD studies relevant to eukaryotic cells.

7.
J Cell Sci ; 134(6)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33622772

RESUMEN

A genome-wide screen recently identified SEC24A as a novel mediator of thapsigargin-induced cell death in HAP1 cells. Here, we determined the cellular mechanism and specificity of SEC24A-mediated cytotoxicity. Measurement of Ca2+ levels using organelle-specific fluorescent indicator dyes showed that Ca2+ efflux from endoplasmic reticulum (ER) and influx into mitochondria were significantly impaired in SEC24A-knockout cells. Furthermore, SEC24A-knockout cells also showed ∼44% less colocalization of mitochondria and peripheral tubular ER. Knockout of SEC24A, but not its paralogs SEC24B, SEC24C or SEC24D, rescued HAP1 cells from cell death induced by three different inhibitors of sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCA) but not from cell death induced by a topoisomerase inhibitor. Thapsigargin-treated SEC24A-knockout cells showed a ∼2.5-fold increase in autophagic flux and ∼10-fold reduction in apoptosis compared to wild-type cells. Taken together, our findings indicate that SEC24A plays a previously unrecognized role in regulating association and Ca2+ flux between the ER and mitochondria, thereby impacting processes dependent on mitochondrial Ca2+ levels, including autophagy and apoptosis.


Asunto(s)
Calcio , Retículo Endoplásmico , Apoptosis , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tapsigargina/metabolismo , Tapsigargina/farmacología
8.
Soft Matter ; 19(35): 6743-6753, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37623699

RESUMEN

We perform computer simulations to explore the escape dynamics of a self-propelled (active) nanorod from circular confinements with narrow opening(s). Our results clearly demonstrate how the persistent and directed motion of the nanorod helps it to escape. Such escape events are absent if the nanorod is passive. To quantify the escape dynamics, we compute the radial probability density function (RPDF) and mean first escape time (MFET) and show how the activity is responsible for the bimodality of RPDF, which is clearly absent if the nanorod is passive. Broadening of displacement distributions with activity has also been observed. The computed mean first escape time decreases with activity. In contrast, the fluctuations of the first escape times vary in a non-monotonic way. This results in high values of the coefficient of variation and indicates the presence of multiple timescales in first escape time distributions and multimodality in uniformity index distributions. We hope our study will help in differentiating activity-driven escape dynamics from purely thermal passive diffusion in confinement.

9.
Soft Matter ; 19(31): 5978-5988, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37497754

RESUMEN

We use computer simulations to investigate the complex dynamics of a polymer, made of active Brownian particles, inside a channel grafted internally with passive polymer chains. Our simulations reveal that this probe-polymer, if passive, exhibits a compact structure when its interaction is repulsive with the grafted chains as it tends to stay within the hollow space created along the axis of the channel. On increasing the attractive interaction, the passive probe-polymer is pulled towards the grafted polymeric region and adopts an extended structure. By contrast, switching on the activity helps the probe-polymer to escape from the local traps caused by the sticky grafted chains. The interplay between the activity of the probe-polymer and its sticky interaction with the grafted chains results in shrinking, followed by swelling as the activity is increased. To elucidate the dynamics we compute the mean square displacement (MSD) of the center of mass of the probe-polymer, which increases monotonically with activity and displays superdiffusive behavior at an intermediate time and enhanced diffusion at a long time period. In addition, compared with the attractive interaction, the active probe-polymer shows faster dynamics when the interaction is repulsive to the grafted polymers. We believe that our current study will provide insights into the structural changes and dynamics of active polymers in heterogeneous media and will be useful in designing polymer-based drug delivery vehicles.

10.
Soft Matter ; 19(7): 1348-1355, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36723034

RESUMEN

A living cell is an active environment where the organization and dynamics of chromatin are affected by different forms of activity. Optical experiments report that loci show subdiffusive dynamics and the chromatin fiber is seen to be coherent over micrometer-scale regions. Using a bead-spring polymer chain with dipolar active forces, we study how the subdiffusive motion of the loci generate large-scale coherent motion of the chromatin. We show that in the presence of extensile (contractile) activity, the dynamics of the loci grows faster (slower) and the spatial correlation length increases (decreases) compared to the case with no dipolar forces. Hence, both the dipolar active forces modify the elasticity of the chain. Interestingly in our model, the dynamics and organization of such dipolar active chains largely differ from the passive chain with renormalized elasticity.

11.
Soft Matter ; 19(4): 689-700, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36598025

RESUMEN

We employ computer simulations to study the dynamics of a self-propelled spherical tracer particle in a viscoelastic medium, made of a long polymer chain. Here, the interplay between viscoelasticity, stickiness, and activity (self-propulsion) brings additional complexity to the tracer dynamics. Our simulations show that on increasing the stickiness of the tracer particle to the polymer beads, the dynamics of the tracer particle slows down as it gets stuck to the polymer chain and moves along with it. But with increasing self-propulsion velocity, the dynamics gets enhanced. In the case of increasing stickiness as well as activity, the non-Gaussian parameter (NGP) exhibits non-monotonic behavior, which also shows up in the re-scaled self part of the van-Hove function. Non-Gaussianity results owing to the enhanced binding events and the sticky motion of the tracer along with the chain with increasing stickiness. On the other hand, with increasing activity, initially non-Gaussianity increases as the tracer moves through the heterogeneous polymeric environment but for higher activity, the tracer escapes resulting in a negative NGP. For higher values of stickiness, the trapping time distributions of the passive tracer particle broaden and have long tails. On the other hand, for a given stickiness with increasing self-propulsion force, the trapping time distributions become narrower and have short tails. We believe that our current simulation study will be helpful in elucidating the complex motion of activity-driven probes in viscoelastic media.

12.
Phys Chem Chem Phys ; 25(3): 1937-1946, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36541408

RESUMEN

The transport of tracer particles through mesh-like environments such as biological hydrogels and polymer matrices is ubiquitous in nature. These tracers can be passive, such as colloids, or active (self-propelled), for example, synthetic nanomotors or bacteria. Computer simulations in principle could be extremely useful in exploring the mechanism of the active transport of tracer particles through mesh-like environments. Therefore, we construct a polymer network on a diamond lattice and use computer simulations to investigate the dynamics of spherical self-propelled particles inside the network. Our main objective is to elucidate the effect of the self-propulsion on the tracer particle dynamics as a function of the tracer size and the stiffness of the polymer network. We compute the time-averaged mean-squared displacement (MSD) and the van-Hove correlations of the tracer. On the one hand, in the case of a bigger sticky particle, the caging caused by the network particles wins over the escape assisted by the self-propulsion. This results an intermediate-time subdiffusion. On the other hand, smaller tracers or tracers with high self-propulsion velocities can easily escape from the cages and show intermediate-time superdiffusion. The stiffer the network, the slower the dynamics of the tracer, and bigger tracers exhibit longer lived intermediate time superdiffusion, since the persistence time scales as ∼σ3, where σ is the diameter of the tracer. At the intermediate time, non-Gaussianity is more pronounced for active tracers. At the long time, the dynamics of the tracer, if passive or weakly active, becomes Gaussian and diffusive, but remains flat for tracers with high self-propulsion, accounting for their seemingly unrestricted motion inside the network.


Asunto(s)
Coloides , Simulación por Computador , Movimiento (Física) , Difusión , Distribución Normal
13.
J Chem Phys ; 159(1)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37403853

RESUMEN

To understand the dynamical and conformational properties of deformable active agents in porous media, we computationally investigate the dynamics of linear chains and rings made of active Brownian monomers. In porous media, flexible linear chains and rings always migrate smoothly and undergo activity-induced swelling. However, semiflexible linear chains though navigate smoothly, shrink at lower activities, followed by swelling at higher activities, while semiflexible rings exhibit a contrasting behavior. Semiflexible rings shrink, get trapped at lower activities, and escape at higher activities. This demonstrates how activity and topology interplay and control the structure and dynamics of linear chains and rings in porous media. We envision that our study will shed light on understanding the mode of transport of shape-changing active agents in porous media.

14.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982602

RESUMEN

Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain unknown. Here, using biochemical fractionation techniques, we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition increases the number of ER-mitochondria contact sites and strengthens this connection by shortening the distance between these two organelles. This work demonstrates how directly manipulating local cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition.


Asunto(s)
Enfermedad de Alzheimer , Colesterol , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Mamíferos/metabolismo , Mitocondrias/metabolismo , Esteroles/metabolismo , Acetil-CoA C-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/metabolismo
15.
Chemphyschem ; 23(21): e202200446, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-35851985

RESUMEN

Recent studies have reported manifold industrial applications of aqueous choline chloride (ChCl) solution as an alternative to deep eutectic solvent. ChCl also serves as a protecting co-solvent for proteins by restricting urea to approach the protein surface and thereby maintaining the water structure around the protein. However, a detailed molecular-level picture of the ChCl and water, even in the absence of urea around a representative hydrophobe is largely lacking. This motivates us to probe the effect of varying wt % of ChCl on the occupancy and orientations of the constituents around a representative solute like methane using computer simulations. Accumulation of water molecules and preferential exclusion of ChCl from the surface of methane perturb the tetrahedral geometry of water around it. We find a tangential alignment of the polar part of the ChCl molecules that interact with water, whereas its hydrophobic part is preferentially facing the methane. With an increase in ChCl wt %, a disruption in the tetrahedrality is evident for water molecules accompanied by a reduction in hydrogen bonds between water pairs in the solution. In short, ChCl induces crowding and modifies the microscopic arrangement and hydrogen bonding structure of the water around the methane and beyond.


Asunto(s)
Colina , Agua , Agua/química , Colina/química , Metano/química , Simulación de Dinámica Molecular , Solventes/química , Urea/química
16.
Soft Matter ; 18(12): 2332-2345, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35244134

RESUMEN

We propose a model for investigating the motion of a single active particle in a heterogeneous environment where the heterogeneity may arise due to crowding, conformational fluctuations and/or slow rearrangement of the surroundings. Describing the active particle in terms of the Ornstein-Uhlenbeck process (OUP) and incorporating heterogeneity in a thermal bath using two separate models, namely "diffusing diffusivity" and "switching diffusion", we explore the essential dynamical properties of the particle for its one-dimensional motion. In addition, we show how the dynamical behavior is controlled by dynamical variables associated with active noise such as strength and persistence time. Our model is relevant in the context of single particle dynamics in a crowded environment, driven by activity.

17.
Soft Matter ; 18(6): 1310-1318, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35060583

RESUMEN

Active transport of biomolecules assisted by motor proteins is imperative for the proper functioning of cellular activities. Inspired by the diffusion of active agents in crowded cellular channels, we computationally investigate the transport of an active tracer through a polymer grafted cylindrical channel by varying the activity of the tracer and stickiness of the tracer to the polymers. Our results reveal that the passive tracer exhibits profound subdiffusion with increasing stickiness by exploring deep into the grafted polymeric zone, while purely repulsive one prefers to diffuse through the pore-like space created along the cylindrical axis of the channel. In contrast, the active tracer shows faster dynamics and intermediate superdiffusion even though the tracer preferentially stays close to the dense polymeric region. This observation is further supported by the sharp peaks in the density profile of the probability of radial displacement of the tracer. We discover that the activity plays an important role in deciding the pathway that the tracer takes through the narrow channel. Interestingly, increasing the activity washes out the effect of stickiness. Adding to this, van-Hove functions manifest that the active tracer dynamics deviates from Gaussianity, and the degree of deviation grows with the activity. Our work has direct implications on how effective transportation and delivery of cargo can be achieved through a confined medium where activity, interactions, and crowding are interplaying. Looking ahead, these factors will be crucial for understanding the mechanism of artificial self-powered machines navigating through the cellular channels and performing in vivo challenging tasks.


Asunto(s)
Polímeros , Fenómenos Biofísicos , Difusión
18.
Soft Matter ; 18(13): 2663-2671, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35311848

RESUMEN

We employ computer simulations to unveil the translational and rotational dynamics of self-driven chemically symmetric and asymmetric rigid dumbbells in a two-dimensional polymer gel. Our results show that the activity or the self-propulsion always enhances the dynamics of the dumbbells. Making the self-propelled dumbbell chemically asymmetric leads to further enhancement in dynamics. Additionally, the direction of self-propulsion is a key factor for chemically asymmetric dumbbells, where self-propulsion towards the non-sticky half of the dumbbell results in faster translational and rotational dynamics compared to the case with the self-propulsion towards the sticky half of the dumbbell. Our analyses show that both the symmetric and asymmetric passive rigid dumbbells get trapped inside the mesh of the polymer gel, but the chemical asymmetry always facilitates the mesh to mesh motion of the dumbbell and it is even more pronounced when the dumbbell is self-propelled. This results in multiple peaks in the van Hove function with increasing self-propulsion. In a nutshell, we believe that our in silico study can guide researchers to design efficient artificial microswimmers possessing potential applications in site-specific delivery.

19.
Nature ; 593(7859): 346-347, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953387
20.
J Cell Sci ; 132(18)2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31413070

RESUMEN

Recent studies show that mitochondria and actin filaments work together in two contexts: (1) increased cytoplasmic calcium induces cytoplasmic actin polymerization that stimulates mitochondrial fission and (2) mitochondrial depolarization causes actin assembly around mitochondria, with roles in mitophagy. It is unclear whether these two processes utilize similar actin assembly mechanisms. Here, we show that these are distinct actin assembly mechanisms in the acute phase after treatment (<10 min). Calcium-induced actin assembly is INF2 dependent and Arp2/3 complex independent, whereas depolarization-induced actin assembly is Arp2/3 complex dependent and INF2 independent. The two types of actin polymerization are morphologically distinct, with calcium-induced filaments throughout the cytosol and depolarization-induced filaments as 'clouds' around depolarized mitochondria. We have previously shown that calcium-induced actin stimulates increases in both mitochondrial calcium and recruitment of the dynamin GTPase Drp1 (also known as DNM1L). In contrast, depolarization-induced actin is temporally associated with extensive mitochondrial dynamics that do not result in mitochondrial fission, but in circularization of the inner mitochondrial membrane (IMM). These dynamics are dependent on the protease OMA1 and independent of Drp1. Actin cloud inhibition causes increased IMM circularization, suggesting that actin clouds limit these dynamics.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Western Blotting , Línea Celular Tumoral , Citoplasma/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Ionomicina/farmacología , Microscopía Confocal , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/fisiología , Multimerización de Proteína/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA