RESUMEN
The alkyl chain length of quaternary ammonium/PEG copolyoxetanes has been varied to discern effects on solution antimicrobial efficacy, hemolytic activity and cytotoxicity. Monomers 3-((4-bromobutoxy)methyl)-3-methyloxetane (BBOx) and 3-((2-(2-methoxyethoxy)ethoxy)methyl)-3-methyloxetane (ME2Ox) were used to prepare precursor P[(BBOx)(ME2Ox)-50:50-4 kDa] copolyoxetane via cationic ring opening polymerization. The 1:1 copolymer composition and Mn (4 kDa) were confirmed by (1)H NMR spectroscopy. After C-Br substitution by a series of tertiary amines, ionic liquid Cx-50 copolyoxetanes were obtained, where 50 is the mole percent of quaternary repeat units and "x" is quaternary alkyl chain length (2, 6, 8, 10, 12, 14, or 16 carbons). Modulated differential scanning calorimetry (MDSC) studies showed Tgs between -40 and -60 °C and melting endotherms for C14-50 and C16-50. Minimum inhibitory concentrations (MIC) were determined for Escherichia coli , Staphylococcus aureus , and Pseudomonas aeruginosa . A systematic dependence of MIC on alkyl chain length was found. The most effective antimicrobials were in the C6-50 to C12-50 range. C8-50 had better overall performance with MICs of 4 µg/mL, E. coli ; 2 µg/mL, S. aureus ; and 24 µg/mL, P. aeruginosa . At 5 × MIC, C8-50 effected >99% kill in 1 h against S. aureus , E. coli , and P. aeruginosa challenges of 10(8) cfu/mL; log reductions (1 h) were 7, 3, and 5, respectively. To provide additional insight into polycation interactions with bacterial membranes, a geometric model based on the dimensions of E. coli is described that provides an estimate of the maximum number of polycations that can chemisorb. Chain dimensions were estimated for polycation C8-50 with a molecular weight of 5 kDa. Considering the approximations for polycation chemisorption (PCC), it is surprising that a calculation based on geometric considerations gives a C8-50 concentration within a factor of 2 of the MIC, 4.0 (±1.2) µg/mL for E. coli . Cx-50 copolyoxetane cytotoxicity was low for human red blood cells, human dermal fibroblasts (HDF), and human foreskin fibroblasts (HFF). Selectivities for bacterial kill over cell lysis were among the highest ever reported for polycations indicating good prospects for biocompatibility.
Asunto(s)
Antibacterianos/farmacología , Fibroblastos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Polietilenglicoles/farmacología , Polímeros/farmacología , Glicoles de Propileno/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Línea Celular , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Polietilenglicoles/síntesis química , Polietilenglicoles/química , Polímeros/síntesis química , Polímeros/química , Glicoles de Propileno/síntesis química , Glicoles de Propileno/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
This study focuses on the solution antimicrobial effectiveness of a novel class of copolyoxetanes with quaternary ammonium and PEG-like side chains. A precursor P[(BBOx-m)(ME2Ox)] copolyoxetane was prepared by cationic ring-opening copolymerization of 3-((4-bromobutoxy)methyl)-3-methyloxetane (BBOx) and 3-((2-(2-methoxyethoxy)ethoxy)methyl)-3-methyloxetane (ME2Ox) to give random copolymers with 14-100 (m) mol % BBOx. Reaction of P[(BBOx-m)(ME2Ox)] with dodecyl dimethylamine gave the corresponding quaternary P[(C12-m)(ME2Ox)] polycation salts, designated C12-m, as viscous liquids in 100% yield. BBOx/ME2Ox and C12/ME2Ox ratios were obtained by (1)H NMR spectroscopy. C12-m molecular weights (M(n), 3.5-21.9 kDa) were obtained from (1)H NMR end group analysis. DSC studies up to 150 °C showed only thermal transitions between -69 and -34 °C assigned to T(g) values. Antibacterial activity for the C12-m copolyoxetanes was tested by determining minimum inhibitory concentrations (MICs) against Gram(+) Staphylococcus aureus and Gram(-) Escherichia coli and Pseudomonas aeruginosa . MIC decreased with increasing C12 mol percent, reaching a minimum in the range C12-43 to C12-60. Overall, the antimicrobial with consistently low MICs for the three tested pathogenic bacteria was C12-43: (bacteria, MIC, µg/mL) E. coli (6), S. aureus (5), and P. aeruginosa (33). For C12-43, minimum biocidal concentration (MBC) to reach 99.99% kill in 24 h required 1.5× MIC for S. aureus and 2× MIC for E. coli and P. aeruginosa . At 5× MIC against a challenge of 10(8) cfu/mL, C12-43 kills ≥99% S. aureus , E. coli , and P. aeruginosa within 1 h. C12-m copolyoxetane cytotoxicity toward human red blood cells was low, indicating good prospects for biocompatibility. The tunability of C12-m copolyoxetane compositions, effective antimicrobial behavior against Gram(+) and Gram(-) bacteria, and promising biocompatibility offer opportunities for further modification and potential applications as therapeutic agents.
Asunto(s)
Antiinfecciosos/química , Materiales Biocompatibles/química , Compuestos Epoxi , Polímeros , Glicoles de Propileno , Bacterias/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , SolubilidadRESUMEN
The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.