Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Org Chem ; 87(11): 7106-7123, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35583483

RESUMEN

Herein, we report the synthesis and characterization of two ruthenium-based pincer-type catalysts, [1]X (X = Cl, PF6) and 2, containing two different tridentate pincer ligands, 2-pyrazolyl-(1,10-phenanthroline) (L1) and 2-arylazo-(1,10-phenanthroline) (L2a/2b, L2a = 2-(phenyldiazenyl)-1,10-phenanthroline; L2b = 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline), and their application in the synthesis of substituted pyrroles via dehydrogenative alcohol functionalization reactions. In catalyst [1]X (X = Cl, PF6), the tridentate scaffold 2-pyrazolyl-(1,10-phenanthroline) (L1) is apparently redox innocent, and all the redox events occur at the metal center, and the coordinated ligands remain as spectators. In contrast, in catalysts 2a and 2b, the coordinated azo-aromatic scaffolds are highly redox-active and known to participate actively during the dehydrogenation of alcohols. A comparison between the catalytic activities of these two catalysts was made, starting from the simple dehydrogenation of alcohols to further dehydrogenative functionalization of alcohols to various substituted pyrroles to understand the advantages/disadvantages of the metal-ligand cooperative approach. Various substituted pyrroles were prepared via dehydrogenative coupling of secondary alcohols and amino alcohols, and the N-substituted pyrroles were synthesized via dehydrogenative coupling of aromatic amines with cis-2-butene-1,4-diol and 2-butyne-1,4-diol, respectively. Several control reactions and spectroscopic experiments were performed to characterize the catalysts and establish the reaction mechanism.

2.
Org Biomol Chem ; 20(2): 296-328, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34904619

RESUMEN

Catalysis offers a straightforward route to prepare various value-added molecules starting from readily available raw materials. The catalytic reactions mostly involve multi-electron transformations. Hence, compared to the inexpensive and readily available 3d-metals, the 4d and 5d-transition metals get an extra advantage for performing multi-electron catalytic reactions as the heavier transition metals prefer two-electron redox events. However, for sustainable development, these expensive and scarce heavy metal-based catalysts need to be replaced by inexpensive, environmentally benign, and economically affordable 3d-metal catalysts. In this regard, a metal-ligand cooperative approach involving transition metal complexes of redox noninnocent ligands offers an attractive alternative. The synergistic participation of redox-active ligands during electron transfer events allows multi-electron transformations using 3d-metal catalysts and allows interesting chemical transformations using 4d and 5d-metals as well. Herein we summarize an up-to-date literature report on the metal-ligand cooperative approaches using transition metal complexes of redox noninnocent ligands as catalysts for a few selected types of catalytic reactions.

3.
J Org Chem ; 86(19): 13186-13197, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34528802

RESUMEN

An iron-catalyzed sustainable, economically affordable, and eco-friendly synthetic protocol for the construction of various trisubstituted pyrimidines is described. A wide range of trisubstituted pyrimidines were prepared using a well-defined, easy to prepare, bench-stable, and phosphine-free iron catalyst featuring a redox-noninnocent tridentate arylazo pincer under comparatively mild aerobic conditions via dehydrogenative functionalization of alcohols with alkynes and amidines.

4.
J Org Chem ; 86(1): 279-290, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33314935

RESUMEN

Nickel-catalyzed [4 + 2] annulation of benzylamines and nitriles via C-H/N-H bond activation, providing straightforward atom-economic access to a wide variety of multisubstituted quinazolines, is reported. Mechanistic investigation revealed that the in situ formed amidines from the coupling of benzylamines and nitriles direct the nickel catalyst to activate the ortho-C-H bond of the phenyl ring of the benzylamine.

5.
Org Biomol Chem ; 19(33): 7217-7233, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34612344

RESUMEN

Herein we report nickel-catalyzed sustainable synthesis of a few chosen five-membered fused nitrogen heterocycles such as benzimidazole, purine, benzothiazole, and benzoxazole via acceptorless dehydrogenative functionalization of alcohols. Using a bench stable, easy to prepare, and inexpensive Ni(ii)-catalyst, [Ni(MeTAA)] (1a), featuring a tetraaza macrocyclic ligand (tetramethyltetraaza[14]annulene (MeTAA)), a wide variety of polysubstituted benzimidazole, purine, benzothiazole, and benzoxazole derivatives were prepared via dehydrogenative coupling of alcohols with 1,2-diaminobenzene, 4,5-diaminopyrimidine, 2-aminothiphenol, and 2-aminophenol, respectively. A wide array of benzimidazoles were also prepared via a borrowing hydrogen approach involving alcohols as hydrogen donors and 2-nitroanilines as hydrogen acceptors. A few control experiments were performed to understand the reaction mechanism.

6.
J Org Chem ; 84(5): 2626-2641, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30685972

RESUMEN

Simple, straightforward, and atom economic methods for the synthesis of quinolines, 2-aminoquinolines, and quinazolines via biomimetic dehydrogenative condensation/coupling reactions, catalyzed by well-defined inexpensive and easy to prepare singlet diradical Ni(II)-catalysts featuring two antiferromagnetically coupled singlet diradical diamine type ligands are described. Various polysubstituted quinolines, 2-aminoquinolines, and quinazolines were synthesized in moderate to good yields from different low-cost and readily accessible starting materials. Several control experiments were carried out to get insight into the reaction mechanism which shows that the nickel and the coordinated diamine ligands participate in a synergistic way during the dehydrogenation of alcohols.

7.
J Org Chem ; 84(7): 4072-4085, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30855958

RESUMEN

A simple and efficient approach of C-S cross-coupling of a wide variety of (hetero)aryl thiols and (hetero)aryl halides under mild conditions, mostly at room temperature, catalyzed by well-defined singlet diradical Ni(II) catalysts bearing redox noninnocent ligands is reported. Taking advantage of ligand centered redox events, the high-energetic Ni(0)/Ni(II) or Ni(I)/Ni(III) redox steps were avoided in the catalytic cycle. The cooperative participation of both nickel and the coordinated ligands during oxidative addition/reductive elimination steps allowed us to perform the catalytic reactions under mild conditions.

8.
J Org Chem ; 84(16): 10160-10171, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31327228

RESUMEN

A simple metal-ligand cooperative approach for the dehydrogenative functionalization of alcohols to various substituted quinolines and quinazolin-4(3H)-ones under relatively mild reaction conditions (≤90 °C) is reported. Simple and easy-to-prepare air-stable Cu(II) complexes featuring redox-active azo-aromatic scaffolds, 2-arylazo-(1,10-phenanthroline) (L1,2), are used as catalyst. A wide variety of substituted quinolines and quinazolin-4(3H)-ones were synthesized in moderate to good isolated yields via dehydrogenative coupling reactions of various inexpensive and easily available starting materials under aerobic conditions. A few control experiments and deuterium labeling studies were carried out to understand the mechanism of the dehydrogenative coupling reactions, which indicate that both copper and the coordinated azo-aromatic ligand participate in a cooperative manner during the catalytic cycle.

9.
J Org Chem ; 83(18): 11154-11166, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30091595

RESUMEN

Two environmentally benign methods for the synthesis of quinazolines via acceptorless dehydrogenative coupling of 2-aminobenzylamine with benzyl alcohol (Path A) and 2-aminobenzylalcohol with benzonitrile (Path B), catalyzed by cheap, earth abundant and easy to prepare nickel catalysts, containing tetraaza macrocyclic ligands (tetramethyltetraaza[14]annulene (MeTAA) or 6,15-dimethyl-8,17-diphenyltetraaza[14]annulene (MePhTAA)) are reported. A wide variety of substituted quinazolines were synthesized in moderate to high yields starting from cheap and easily available starting precursors. A few control reactions were performed to understand the mechanism and to establish the acceptorless dehydrogenative nature of the catalytic reactions.

10.
Org Biomol Chem ; 16(2): 274-284, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29242865

RESUMEN

A general, efficient and environmentally benign, one-step synthesis of substituted quinoline derivatives was achieved by acceptorless dehydrogenative coupling of o-aminobenzylalcohols with ketones and secondary alcohols catalyzed by a cheap, earth abundant and easy to prepare nickel catalyst [Ni(MeTAA)], featuring a tetraaza macrocyclic ligand (tetramethyltetraaza[14]annulene (MeTAA)). A wide variety of substituted quinolines were synthesized in high yields starting from readily available o-aminobenzylalcohols and ketones or secondary alcohols. A few controlled reactions were carried out to establish the acceptorless dehydrogenative nature of the reactions.

11.
J Nucl Med ; 50(1): 36-44, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19091885

RESUMEN

UNLABELLED: Glioblastoma multiforme is a primary brain tumor known for its rapid proliferation, diffuse invasion, and prominent neovasculature and necrosis. This study explores the in vivo link between these characteristics and hypoxia by comparing the relative spatial geometry of developing vasculature inferred from gadolinium-enhanced T1-weighted MRI (T1Gd), edematous tumor extent revealed on T2-weighted MRI (T2), and hypoxia assessed by 18F-fluoromisonidazole PET (18F-FMISO). Given the role of hypoxia in upregulating angiogenic factors, we hypothesized that the distribution of hypoxia seen on 18F-FMISO is correlated spatially and quantitatively with the amount of leaky neovasculature seen on T1Gd. METHODS: A total of 24 patients with glioblastoma underwent T1Gd, T2, and 18F-FMISO-11 studies preceded surgical resection or biopsy, 7 followed surgery and preceded radiation therapy, and 11 followed radiation therapy. Abnormal regions seen on the MRI scan were segmented, including the necrotic center (T0), the region of abnormal blood-brain barrier associated with disrupted vasculature (T1Gd), and infiltrating tumor cells and edema (T2). The 18F-FMISO images were scaled to the blood 18F-FMISO activity to create tumor-to-blood ratio (T/B) images. The hypoxic volume (HV) was defined as the region with T/Bs greater than 1.2, and the maximum T/B (T/Bmax) was determined by the voxel with the greatest T/B value. RESULTS: The HV generally occupied a region straddling the outer edge of the T1Gd abnormality and into the T2. A significant correlation between HV and the volume of the T1Gd abnormality that relied on the existence of a large outlier was observed. However, there was consistent correlation between surface areas of all MRI-defined regions and the surface area of the HV. The T/Bmax, typically located within the T1Gd region, was independent of the MRI-defined tumor size. Univariate survival analysis found the most significant predictors of survival to be HV, surface area of HV, surface area of T1Gd, and T/Bmax. CONCLUSION: Hypoxia may drive the peripheral growth of glioblastomas. This conclusion supports the spatial link between the volumes and surface areas of the hypoxic and MRI regions; the magnitude of hypoxia, T/Bmax, remains independent of size.


Asunto(s)
Glioblastoma/diagnóstico , Imagen por Resonancia Magnética/métodos , Misonidazol/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Adulto , Anciano , Femenino , Gadolinio , Glioblastoma/complicaciones , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Hipoxia/metabolismo , Masculino , Persona de Mediana Edad , Neovascularización Patológica/diagnóstico por imagen , Pronóstico , Análisis de Supervivencia , Carga Tumoral
12.
Math Med Biol ; 29(1): 31-48, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21562060

RESUMEN

Glioblastoma multiforme (GBM) is a class of primary brain tumours characterized by their ability to rapidly proliferate and diffusely infiltrate surrounding brain tissue. The aggressive growth of GBM leads to the development of regions of low oxygenation (hypoxia), which can be clinically assessed through [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) imaging. Building upon the success of our previous mathematical modelling efforts, we have expanded our model to include the tumour microenvironment, specifically incorporating hypoxia, necrosis and angiogenesis. A pharmacokinetic model for the FMISO-PET tracer is applied at each spatial location throughout the brain and an analytical simulator for the image acquisition and reconstruction methods is applied to the resultant tracer activity map. The combination of our anatomical model with one for FMISO tracer dynamics and PET image reconstruction is able to produce a patient-specific virtual PET image that reproduces the image characteristics of the clinical PET scan as well as shows no statistical difference in the distribution of hypoxia within the tumour. This work establishes proof of principle for a link between anatomical (magnetic resonance image [MRI]) and molecular (PET) imaging on a patient-specific basis as well as address otherwise untenable questions in molecular imaging, such as determining the effect on tracer activity from cellular density. Although further investigation is necessary to establish the predicitve value of this technique, this unique tool provides a better dynamic understanding of the biological connection between anatomical changes seen on MRI and biochemical activity seen on PET of GBM in vivo.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/patología , Modelos Biológicos , Tomografía de Emisión de Positrones/estadística & datos numéricos , Interfaz Usuario-Computador , Adulto , Proliferación Celular , Simulación por Computador , Radioisótopos de Flúor , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Humanos , Hipoxia/diagnóstico por imagen , Hipoxia/patología , Interpretación de Imagen Asistida por Computador , Masculino , Conceptos Matemáticos , Misonidazol/análogos & derivados , Necrosis , Invasividad Neoplásica , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/patología , Medicina de Precisión , Radiofármacos
13.
Cancer Res ; 69(10): 4502-9, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19366800

RESUMEN

Glioblastoma multiforme (GBM) are aggressive and uniformly fatal primary brain tumors characterized by their diffuse invasion of the normal-appearing parenchyma peripheral to the clinical imaging abnormality. Hypoxia, a hallmark of aggressive tumor behavior often noted in GBMs, has been associated with resistance to therapy, poorer survival, and more malignant tumor phenotypes. Based on the existence of a set of novel imaging techniques and modeling tools, our objective was to assess a hypothesized quantitative link between tumor growth kinetics [assessed via mathematical models and routine magnetic resonance imaging (MRI)] and the hypoxic burden of the tumor [assessed via positron emission tomography (PET) imaging]. Our biomathematical model for glioma kinetics describes the spatial and temporal evolution of a glioma in terms of concentration of malignant tumor cells. This model has already been proven useful as a novel tool to dynamically quantify the net rates of proliferation (rho) and invasion (D) of the glioma cells in individual patients. Estimates of these kinetic rates can be calculated from routinely available pretreatment MRI in vivo. Eleven adults with GBM were imaged preoperatively with (18)F-fluoromisonidazole (FMISO)-PET and serial gadolinium-enhanced T1- and T2-weighted MRIs to allow the estimation of patient-specific net rates of proliferation (rho) and invasion (D). Hypoxic volumes were quantified from each FMISO-PET scan following standard techniques. To control for tumor size variability, two measures of hypoxic burden were considered: relative hypoxia (RH), defined as the ratio of the hypoxic volume to the T2-defined tumor volume, and the mean intensity on FMISO-PET scaled to the blood activity of the tracer (mean T/B). Pearson correlations between RH and the net rate of cell proliferation (rho) reached significance (P < 0.04). Moreover, highly significant positive correlations were found between biological aggressiveness ratio (rho/D) and both RH (P < 0.00003) and the mean T/B (P < 0.0007).


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , División Celular/fisiología , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Imagen por Resonancia Magnética/métodos , Invasividad Neoplásica/patología , Adulto , Simulación por Computador , Medios de Contraste , Femenino , Radioisótopos de Flúor , Gadolinio , Humanos , Aumento de la Imagen , Persona de Mediana Edad , Misonidazol/análogos & derivados , Tomografía de Emisión de Positrones
14.
Nanotechnology ; 19(25): 255401, 2008 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-21828650

RESUMEN

The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA