Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961633

RESUMEN

Global wheat production amounted to >780 MMT during 2022-2023 whose market size are valued at >$128 billion. Wheat is highly susceptible to high-temperature stress (HTS) throughout the life cycle and its yield declines 5-7% with the rise in each degree of temperature. Previously, we reported an array of HTS-response markers from a resilient wheat cv. Unnat Halna and described their putative role in heat acclimation. To complement our previous results and identify the key determinants of thermotolerance, here we examined the cytoplasmic proteome of a sensitive cv. PBW343. The HTS-triggered metabolite reprograming highlighted how proteostasis defects influence the formation of an integrated stress-adaptive response. The proteomic analysis identified several promising HTS-responsive proteins, including a NACα18 protein, designated TaNACα18, whose role in thermotolerance remains unknown. Dual localization of TaNACα18 suggests its crucial functions in the cytoplasm and nucleus. The homodimerization of TaNACα18 anticipated its function as a transcriptional coactivator. The complementation of TaNACα18 in yeast and overexpression in wheat demonstrated its role in thermotolerance across the kingdom. Altogether, our results suggest that TaNACα18 imparts tolerance through tight regulation of gene expression, cell wall remodeling and activation of cell defense responses.

2.
J Proteome Res ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572503

RESUMEN

The plant surveillance system confers specificity to disease and immune states by activating distinct molecular pathways linked to cellular functionality. The extracellular matrix (ECM), a preformed passive barrier, is dynamically remodeled at sites of interaction with pathogenic microbes. Stem rot, caused by Macrophomina phaseolina, adversely affects fiber production in jute. However, how wall related susceptibility affects the ECM proteome and metabolome remains undetermined in bast fiber crops. Here, stem rot responsive quantitative temporal ECM proteome and metabolome were developed in jute upon M. phaseolina infection. Morpho-histological examination revealed that leaf shredding was accompanied by reactive oxygen species production in patho-stressed jute. Electron microscopy showed disease progression and ECM architecture remodeling due to necrosis in the later phase of fungal attack. Using isobaric tags for relative and absolute quantitative proteomics and liquid chromatography-tandem mass spectrometry, we identified 415 disease-responsive proteins involved in wall integrity, acidification, proteostasis, hydration, and redox homeostasis. The disease-related correlation network identified functional hubs centered on α-galactosidase, pectinesterase, and thaumatin. Gas chromatography-mass spectrometry analysis pointed toward enrichment of disease-responsive metabolites associated with the glutathione pathway, TCA cycle, and cutin, suberin, and wax metabolism. Data demonstrated that wall-degrading enzymes, structural carbohydrates, and calcium signaling govern rot responsive wall-susceptibility. Proteomics data were deposited in Pride (PXD046937; PXD046939).

3.
Plant Cell Environ ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825969

RESUMEN

Molecular communication between macromolecules dictates extracellular matrix (ECM) dynamics during pathogen recognition and disease development. Extensive research has shed light on how plant immune components are activated, regulated and function in response to pathogen attack. However, two key questions remain largely unresolved: (i) how does ECM dynamics govern susceptibility and disease resistance, (ii) what are the components that underpin these phenomena? Rice blast, caused by Magnaporthe oryzae adversely affects rice productivity. To understand ECM regulated genotype-phenotype plasticity in blast disease, we temporally profiled two contrasting rice genotypes in disease and immune state. Morpho-histological, biochemical and electron microscopy analyses revealed that increased necrotic lesions accompanied by electrolyte leakage governs disease state. Wall carbohydrate quantification showed changes in pectin level was more significant in blast susceptible compared to blast resistant cultivar. Temporally resolved quantitative disease- and immune-responsive ECM proteomes identified 308 and 334 proteins, respectively involved in wall remodelling and integrity, signalling and disease/immune response. Pairwise comparisons between time and treatment, messenger ribonucleic acid expression, diseasome and immunome networks revealed novel blast-related functional modules. Data demonstrated accumulation of α-galactosidase and phosphatase were associated with disease state, while reactive oxygen species, induction of Lysin motif proteins, CAZymes and extracellular Ca-receptor protein govern immune state.

4.
Plant Cell Environ ; 46(1): 5-22, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36151598

RESUMEN

Stress resilience behaviours in plants are defensive mechanisms that develop under adverse environmental conditions to promote growth, development and yield. Over the past decades, improving stress resilience, especially in crop species, has been a focus of intense research for global food security and economic growth. Plants have evolved specific mechanisms to sense external stress and transmit information to the cell interior and generate appropriate responses. Plant cytoskeleton, comprising microtubules and actin filaments, takes a center stage in stress-induced signalling pathways, either as a direct target or as a signal transducer. In the past few years, it has become apparent that the function of the plant cytoskeleton and other associated proteins are not merely limited to elementary processes of cell growth and proliferation, but they also function in stress response and resilience. This review summarizes recent advances in the role of plant cytoskeleton and associated proteins in abiotic stress management. We provide a thorough overview of the mechanisms that plant cells employ to withstand different abiotic stimuli such as hypersalinity, dehydration, high temperature and cold, among others. We also discuss the crucial role of the plant cytoskeleton in organellar positioning under the influence of high light intensity.


Asunto(s)
Estrés Fisiológico
5.
Plant J ; 105(5): 1374-1389, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33283912

RESUMEN

The molecular mechanism of high-temperature stress (HTS) response, in plants, has so far been investigated using transcriptomics, while the dynamics of HTS-responsive proteome remain unexplored. We examined the adaptive responses of the resilient wheat cultivar 'Unnat Halna' and dissected the HTS-responsive proteome landscape. This led to the identification of 55 HTS-responsive proteins (HRPs), which are predominantly involved in metabolism and defense pathways. Interestingly, HRPs included a 2-cysteine peroxiredoxin (2CP), designated Ta2CP, presumably involved in stress perception and adaptation. Complementation of Ta2CP in yeast and heterologous expression in Arabidopsis demonstrated its role in thermotolerance. Both Ta2CP silencing and overexpression inferred the involvement of Ta2CP in plant growth and chlorophyll biosynthesis. We demonstrated that Ta2CP interacts with protochlorophyllide reductase b, TaPORB. Reduced TaPORB expression was found in Ta2cp-silenced plants, while upregulation was observed in Ta2CP-overexpressed plants. Furthermore, the downregulation of Ta2CP in Taporb-silenced plants and reduction of protochlorophyllide in Ta2cp-silenced plants suggested the key role of Ta2CP in chlorophyll metabolism. Additionally, the transcript levels of AGPase1 and starch were increased in Ta2cp-silenced plants. More significantly, HTS-treated Ta2cp-silenced plants showed adaptive responses despite increased reactive oxygen species and peroxide concentrations, which might help in rapid induction of high-temperature acclimation.


Asunto(s)
Peroxirredoxinas/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Antioxidantes/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Calor , Proteínas de Plantas/genética , Triticum/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-34669040

RESUMEN

The controlled human infection model (CHIM) for enterotoxigenic Escherichia coli (ETEC) has been instrumental in defining ETEC as a causative agent of acute watery diarrhea, providing insights into disease pathogenesis and resistance to illness, and enabling preliminary efficacy evaluations for numerous products including vaccines, immunoprophylactics, and drugs. Over a dozen strains have been evaluated to date, with a spectrum of clinical signs and symptoms that appear to replicate the clinical illness seen with naturally occurring ETEC. Recent advancements in the ETEC CHIM have enhanced the characterization of clinical, immunological, and microbiological outcomes. It is anticipated that omics-based technologies applied to ETEC CHIMs will continue to broaden our understanding of host-pathogen interactions and facilitate the development of primary and secondary prevention strategies.

7.
Physiol Plant ; 174(1): e13613, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35199362

RESUMEN

The screening of a dehydration-responsive chloroplast proteome of chickpea led us to identify and investigate the functional importance of an uncharacterized protein, designated CaPDZ1. In all, we identified 14 CaPDZs, and phylogenetic analysis revealed that these belong to photosynthetic eukaryotes. Sequence analyses of CaPDZs indicated that CaPDZ1 is a unique member, which harbours a TPR domain besides a PDZ domain. The global expression analysis showed that CaPDZs are intimately associated with various stresses such as dehydration and oxidative stress along with certain phytohormone responses. The CaPDZ1-overexpressing chickpea seedlings exhibited distinct phenotypic and molecular responses, particularly increased photosystem (PS) efficiency, ETR and qP that validated its participation in PSII complex assembly and/or repair. The investigation of CaPDZ1 interacting proteins through Y2H library screening and co-IP analysis revealed the interacting partners to be PSII associated CP43, CP47, D1, D2 and STN8. These findings supported the earlier hypothesis regarding the role of direct or indirect involvement of PDZ proteins in PS assembly or repair. Moreover, the GUS-promoter analysis demonstrated the preferential expression of CaPDZ1 specifically in photosynthetic tissues. We classified CaPDZ1 as a dehydration-responsive chloroplast intrinsic protein with multi-fold abundance under dehydration stress, which may participate synergistically with other chloroplast proteins in the maintenance of the photosystem.


Asunto(s)
Cicer , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Cicer/genética , Cicer/metabolismo , Deshidratación/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Filogenia
8.
Plant J ; 103(2): 561-583, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32170889

RESUMEN

Pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) initiate complex defense responses by reorganizing the biomolecular dynamics of the host cellular machinery. The extracellular matrix (ECM) acts as a physical scaffold that prevents recognition and entry of phytopathogens, while guard cells perceive and integrate signals metabolically. Although chitosan is a known MAMP implicated in plant defense, the precise mechanism of chitosan-triggered immunity (CTI) remains unknown. Here, we show how chitosan imparts immunity against fungal disease. Morpho-histological examination revealed stomatal closure accompanied by reductions in stomatal conductance and transpiration rate as early responses in chitosan-treated seedlings upon vascular fusariosis. Electron microscopy and Raman spectroscopy showed ECM fortification leading to oligosaccharide signaling, as documented by increased galactose, pectin and associated secondary metabolites. Multiomics approach using quantitative ECM proteomics and metabolomics identified 325 chitosan-triggered immune-responsive proteins (CTIRPs), notably novel ECM structural proteins, LYM2 and receptor-like kinases, and 65 chitosan-triggered immune-responsive metabolites (CTIRMs), including sugars, sugar alcohols, fatty alcohols, organic and amino acids. Identified proteins and metabolites are linked to reactive oxygen species (ROS) production, stomatal movement, root nodule development and root architecture coupled with oligosaccharide signaling that leads to Fusarium resistance. The cumulative data demonstrate that ROS, NO and eATP govern CTI, in addition to induction of PR proteins, CAZymes and PAL activities, besides accumulation of phenolic compounds downstream of CTI. The immune-related correlation network identified functional hubs in the CTI pathway. Altogether, these shifts led to the discovery of chitosan-responsive networks that cause significant ECM and guard cell remodeling, and translate ECM cues into cell fate decisions during fusariosis.


Asunto(s)
Quitosano/metabolismo , Cicer/inmunología , Matriz Extracelular/fisiología , Fusarium , Enfermedades de las Plantas/inmunología , Estomas de Plantas/fisiología , Metabolismo de los Hidratos de Carbono , Cicer/metabolismo , Cicer/microbiología , Interacciones Huésped-Patógeno , Metaboloma , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteoma , Plantones/inmunología , Plantones/microbiología
9.
J Exp Bot ; 72(3): 793-807, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33245770

RESUMEN

Plant mitochondrial respiration involves the operation of various alternative pathways. These pathways participate, both directly and indirectly, in the maintenance of mitochondrial functions though they do not contribute to energy production, being uncoupled from the generation of an electrochemical gradient across the mitochondrial membrane and thus from ATP production. Recent findings suggest that uncoupled respiration is involved in reactive oxygen species (ROS) and nitric oxide (NO) scavenging, regulation, and homeostasis. Here we discuss specific roles and possible functions of uncoupled mitochondrial respiration in ROS and NO metabolism. The mechanisms of expression and regulation of the NDA-, NDB- and NDC-type non-coupled NADH and NADPH dehydrogenases, the alternative oxidase (AOX), and the uncoupling protein (UCP) are examined in relation to their involvement in the establishment of the stable far-from-equilibrium state of plant metabolism. The role of uncoupled respiration in controlling the levels of ROS and NO as well as inducing signaling events is considered. Secondary functions of uncoupled respiration include its role in protection from stress factors and roles in biosynthesis and catabolism. It is concluded that uncoupled mitochondrial respiration plays an important role in providing rapid adaptation of plants to changing environmental factors via regulation of ROS and NO.


Asunto(s)
Mitocondrias , Nitrógeno , Oxígeno , Proteínas Mitocondriales , Óxido Nítrico , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno
10.
Proc Natl Acad Sci U S A ; 115(38): E8968-E8976, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126994

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a global diarrheal pathogen that utilizes adhesins and secreted enterotoxins to cause disease in mammalian hosts. Decades of research on virulence factor regulation in ETEC has revealed a variety of environmental factors that influence gene expression, including bile, pH, bicarbonate, osmolarity, and glucose. However, other hallmarks of the intestinal tract, such as low oxygen availability, have not been examined. Further, determining how ETEC integrates these signals in the complex host environment is challenging. To address this, we characterized ETEC's response to the human host using samples from a controlled human infection model. We found ETEC senses environmental oxygen to globally influence virulence factor expression via the oxygen-sensitive transcriptional regulator fumarate and nitrate reduction (FNR) regulator. In vitro anaerobic growth replicates the in vivo virulence factor expression profile, and deletion of fnr in ETEC strain H10407 results in a significant increase in expression of all classical virulence factors, including the colonization factor antigen I (CFA/I) adhesin operon and both heat-stable and heat-labile enterotoxins. These data depict a model of ETEC infection where FNR activity can globally influence virulence gene expression, and therefore proximity to the oxygenated zone bordering intestinal epithelial cells likely influences ETEC virulence gene expression in vivo. Outside of the host, ETEC biofilms are associated with seasonal ETEC epidemics, and we find FNR is a regulator of biofilm production. Together these data suggest FNR-dependent oxygen sensing in ETEC has implications for human infection inside and outside of the host.


Asunto(s)
Escherichia coli Enterotoxigénica/patogenicidad , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Proteínas Hierro-Azufre/genética , Adulto , Biopelículas , Diarrea/epidemiología , Diarrea/microbiología , Diarrea/prevención & control , Células Epiteliales/microbiología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Proteínas de Escherichia coli/metabolismo , Vacunas contra Escherichia coli/administración & dosificación , Femenino , Voluntarios Sanos , Humanos , Intestinos/citología , Intestinos/microbiología , Proteínas Hierro-Azufre/metabolismo , Masculino , Persona de Mediana Edad , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Adulto Joven
11.
Proteomics ; 20(8): e1900267, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32146728

RESUMEN

Nutrient dynamics in storage organs is a complex developmental process that requires coordinated interactions of environmental, biochemical, and genetic factors. Although sink organ developmental events have been identified, understanding of translational and post-translational regulation of reserve synthesis, accumulation, and utilization in legumes is limited. To understand nutrient dynamics during embryonic and cotyledonary photoheterotrophic transition to mature and germinating autotrophic seeds, an integrated proteomics and phosphoproteomics study in six sequential seed developmental stages in chickpea is performed. MS/MS analyses identify 109 unique nutrient-associated proteins (NAPs) involved in metabolism, storage and biogenesis, and protein turnover. Differences and similarities in 60 nutrient-associated phosphoproteins (NAPPs) containing 93 phosphosites are compared with NAPs. Data reveal accumulation of carbon-nitrogen metabolic and photosynthetic proteoforms during seed filling. Furthermore, enrichment of storage proteoforms and protease inhibitors is associated with cell expansion and seed maturation. Finally, combined proteoforms network analysis identifies three significant modules, centered around malate dehydrogenase, HSP70, triose phosphate isomerase, and vicilin. Novel clues suggest that ubiquitin-proteasome pathway regulates nutrient reallocation. Second, increased abundance of NAPs/NAPPs related to oxidative and serine/threonine signaling indicates direct interface between redox sensing and signaling during seed development. Taken together, nutrient signals act as metabolic and differentiation determinant governing storage organ reprogramming.


Asunto(s)
Cicer/metabolismo , Fosfoproteínas/análisis , Proteínas de Plantas/análisis , Semillas/fisiología , Carbono/metabolismo , Cicer/crecimiento & desarrollo , Cicer/fisiología , Enzimas/metabolismo , Germinación , Nitrógeno/metabolismo , Oxidación-Reducción , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Reproducibilidad de los Resultados , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transducción de Señal
12.
Proteomics ; 19(3): e1800188, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30468014

RESUMEN

Modulation of plant immune system by extrinsic/intrinsic factors and host-specific determinants fine-tunes cellular components involving multiple organelles, particularly nucleus to mount resistance against pathogen attack. Rice blast, caused by hemibiotrophic fungus Magnaporthe oryzae, is one of the most devastating diseases that adversely affect rice productivity. However, the role of nuclear proteins and their regulation in response to M. oryzae remains unknown. Here, the nucleus-associated immune pathways in blast-resistant rice genotype are elucidated. Temporal analysis of nuclear proteome is carried out using 2-DE coupled MS/MS analysis. A total of 140 immune responsive proteins are identified associated with nuclear reorganization, cell division, energy production/deprivation, signaling, and gene regulation. The proteome data are interrogated using correlation network analysis that identified significant functional modules pointing toward immune-related coinciding processes through a common mechanism of remodeling and homeostasis. Novel clues regarding blast resistance include nucleus-associated redox homeostasis and glycolytic enzyme-mediated chromatin organization which manipulates cell division and immunity. Taken together, the study herein provides evidence that the coordination of nuclear function and reprogramming of host translational machinery regulate resistance mechanism against blast disease.


Asunto(s)
Magnaporthe/inmunología , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/inmunología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Magnaporthe/fisiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Transducción de Señal , Espectrometría de Masas en Tándem
13.
Am J Physiol Gastrointest Liver Physiol ; 316(2): G229-G246, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30406698

RESUMEN

Whether zinc (Zn2+) regulates barrier functions by modulating tight-junction (TJ) proteins when pathogens such as Shigella alter epithelial permeability is still unresolved. We investigated the potential benefits of Zn2+ in restoring impaired barrier function in vivo in Shigella-infected mouse tissue and in vitro in T84 cell monolayers. Basolateral Shigella infection triggered a time-dependent decrease in transepithelial resistance followed by an increase in paracellular permeability of FITC-labeled dextran and altered ion selectivity. This led to ion and water loss into the intestinal lumen. Immunofluorescence studies revealed redistribution of claudin-2 and -4 to an intracellular location and accumulation of these proteins in the cytoplasm following infection. Zn2+ ameliorated this perturbed barrier by redistribution of claudin-2 and -4 back to the plasma membrane and by modulating the phosphorylation state of TJ proteins t hough extracellular signal-regulated kinase (ERK)1/2 dependency. Zn2+ prevents elevation of IL-6 and IL-8. Mice challenged with Shigella showed that oral Zn2+supplementation diminished diverse pathophysiological symptoms of shigellosis. Claudin-2 and -4 were susceptible to Shigella infection, resulting in altered barrier function and increased levels of IL-6 and IL-8. Zn2+ supplementation ameliorated this barrier dysfunction, and the inflammatory response involving ERK-mediated change of phosphorylation status for claudin-2 and -4. Thus, Zn2+ may have potential therapeutic value in inflammatory diarrhea and shigellosis. NEW & NOTEWORTHY Our study addresses whether Zn2+ could be an alternative strategy to reduce Shigella-induced inflammatory response and epithelial barrier dysfunction. We have defined a mechanism in terms of intracellular signaling pathways and tight-junction protein expression by Zn2+. Claudin-2 and -4 are susceptible to Shigella infection, whereas in the presence of Zn2+ they are resistant to infection-related barrier dysfunction involving ERK-mediated change of phosphorylation status of claudins.


Asunto(s)
Claudina-2/metabolismo , Claudina-4/metabolismo , Permeabilidad/efectos de los fármacos , Zinc/farmacología , Animales , Claudina-2/efectos de los fármacos , Claudina-4/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Zinc/metabolismo
14.
Planta ; 250(3): 839-855, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30627890

RESUMEN

MAIN CONCLUSION: This study highlights dehydration-mediated temporal changes in physicochemical, transcriptome and metabolome profiles indicating altered gene expression and metabolic shifts, underlying endurance and adaptation to stress tolerance in the marginalized crop, grasspea. Grasspea, often regarded as an orphan legume, is recognized to be fairly tolerant to water-deficit stress. In the present study, 3-week-old grasspea seedlings were subjected to dehydration by withholding water over a period of 144 h. While there were no detectable phenotypic changes in the seedlings till 48 h, the symptoms appeared during 72 h and aggravated upon prolonged dehydration. The physiological responses to water-deficit stress during 72-96 h displayed a decrease in pigments, disruption in membrane integrity and osmotic imbalance. We evaluated the temporal effects of dehydration at the transcriptome and metabolome levels. In total, 5201 genes of various functional classes including transcription factors, cytoplasmic enzymes and structural cell wall proteins, among others, were found to be dehydration-responsive. Further, metabolome profiling revealed 59 dehydration-responsive metabolites including sugar alcohols and amino acids. Despite the lack of genome information of grasspea, the time course of physicochemical and molecular responses suggest a synchronized dehydration response. The cross-species comparison of the transcriptomes and metabolomes with other legumes provides evidence for marked molecular diversity. We propose a hypothetical model that highlights novel biomarkers and explain their relevance in dehydration-response, which would facilitate targeted breeding and aid in commencing crop improvement efforts.


Asunto(s)
Lathyrus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Productos Agrícolas/fisiología , Deshidratación , Perfilación de la Expresión Génica , Genes de Plantas/fisiología , Lathyrus/genética , Lathyrus/metabolismo , Lathyrus/fisiología , Peroxidación de Lípido , Prolina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/metabolismo , Plantones/fisiología , Transcriptoma , Agua/metabolismo
15.
Planta ; 250(3): 857-871, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31203447

RESUMEN

MAIN CONCLUSION: This represents the first report deciphering the dehydration response of suspension-cultured cells of a crop species, highlighting unique and shared pathways, and adaptive mechanisms via profiling of 330 metabolites. Grasspea, being a hardy legume, is an ideal model system to study stress tolerance mechanisms in plants. In this study, we investigated the dehydration-responsive metabolome in grasspea suspension-cultured cells (SCCs) to identify the unique and shared metabolites crucial in imparting dehydration tolerance. To reveal the dehydration-induced metabolite signatures, SCCs of grasspea were exposed to 10% PEG, followed by metabolomic profiling. Chromatographic separation by HPLC coupled with MRM-MS led to the identification of 330 metabolites, designated dehydration-responsive metabolites (DRMs), which belonged to 28 varied functional classes. The metabolome was found to be constituted by carboxylic acids (17%), amino acids (13.5%), flavonoids (10.9%) and plant growth regulators (10%), among others. Pathway enrichment analysis revealed predominance of metabolites involved in phytohormone biosynthesis, secondary metabolism and osmotic adjustment. Exogenous application of DRMs, arbutin and acetylcholine, displayed improved physiological status in stress-resilient grasspea as well as hypersensitive pea, while administration of lauric acid imparted detrimental effects. This represents the first report on stress-induced metabolomic landscape of a crop species via a suspension culture system, which would provide new insights into the molecular mechanism of stress responses and adaptation in crop species.


Asunto(s)
Lathyrus/metabolismo , Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión , Productos Agrícolas/metabolismo , Deshidratación , Flavonoides/metabolismo , Lathyrus/fisiología , Redes y Vías Metabólicas/fisiología , Metabolómica , Reguladores del Crecimiento de las Plantas/metabolismo
16.
Plant Cell Environ ; 42(1): 230-244, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29749054

RESUMEN

Nonavailability of water or dehydration remains recurring climatic disorder affecting yield of major food crops, legumes in particular. Nuclear proteins (NPs) and phosphoproteins (NPPs) execute crucial cellular functions that form the regulatory hub for coordinated stress response. Phosphoproteins hold enormous influence over cellular signalling. Four-week-old seedlings of a grain legume, chickpea, were subjected to gradual dehydration, and NPs were extracted from unstressed control and from 72- and 144-hr stressed tissues. We identified 4,832 NPs and 478 phosphosites, corresponding to 299 unique NPPs involved in multivariate cellular processes including protein modification and gene expression regulation, among others. The identified proteins included several novel kinases, phosphatases, and transcription factors, besides 660 uncharacterized proteins. Spliceosome complex and splicing related proteins were dominant among differentially regulated NPPs, indicating their dehydration modulated regulation. Phospho-motif analysis revealed stress-induced enrichment of proline-directed serine phosphorylation. Association mapping of NPPs revealed predominance of differential phosphorylation of spliceosome and splicing associated proteins. Also, regulatory proteins of key processes viz., protein degradation, regulation of flowering time, and circadian clock were observed to undergo dehydration-induced dephosphorylation. The characterization of novel regulatory proteins would provide new insights into stress adaptation and enable directed genetic manipulations for developing climate-resilient crops.


Asunto(s)
Cicer/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Cicer/fisiología , Deshidratación , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/fisiología , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología , Fosforilación , Proteínas de Plantas/fisiología , Proteoma/fisiología , Plantones/metabolismo , Plantones/fisiología
17.
J Infect Dis ; 218(9): 1436-1446, 2018 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-29800314

RESUMEN

Background: Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in the developing world. Enterotoxigenic E coli vaccinology has been challenged by genetic diversity and heterogeneity of canonical antigens. Examination of the antigenic breadth of immune responses associated with protective immunity could afford new avenues for vaccine development. Methods: Antibody lymphocyte supernatants (ALS) and sera from 20 naive human volunteers challenged with ETEC strain H10407 and from 10 volunteers rechallenged 4-6 weeks later with the same strain (9 of whom were completely protected on rechallenge) were tested against ETEC proteome microarrays containing 957 antigens. Results: Enterotoxigenic E coli challenge stimulated robust serum and mucosal (ALS) responses to canonical vaccine antigens (CFA/I, and the B subunit of LT) as well as a small number of antigens not presently targeted in ETEC vaccines. These included pathovar-specific secreted proteins (EtpA, EatA) as well as highly conserved E coli antigens including YghJ, flagellin, and pertactin-like autotransporter proteins, all of which have previously afforded protection against ETEC infection in preclinical studies. Conclusions: Taken together, studies reported here suggest that immune responses after ETEC infection involve traditional vaccine targets as well as a select number of more recently identified protein antigens that could offer additional avenues for vaccine development for these pathogens.


Asunto(s)
Antígenos Bacterianos/inmunología , Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Anticuerpos Antibacterianos/inmunología , Proteínas Portadoras/inmunología , Proteínas de Escherichia coli/inmunología , Humanos , Glicoproteínas de Membrana/inmunología , Péptido Hidrolasas
18.
Clin Infect Dis ; 66(9): 1435-1441, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29145631

RESUMEN

Background: Campylobacter species are a leading cause of diarrheal disease globally with significant morbidity. Primary prevention efforts have yielded limited results. Rifaximin chemoprophylaxis decreases rates of travelers' diarrhea and may be suitable for high-risk persons. We assessed the efficacy of rifaximin in the controlled human infection model for Campylobacter jejuni. Methods: Twenty-eight subjects were admitted to an inpatient facility and randomized to a twice-daily dose of 550 mg rifaximin or placebo. The following day, subjects ingested 1.7 × 105 colony-forming units of C. jejuni strain CG8421. Subjects continued prophylaxis for 3 additional days, were followed for campylobacteriosis for 144 hours, and were subsequently treated with azithromycin and ciprofloxacin. Samples were collected to assess immunologic responses to CG8421. Results: There was no difference (P = 1.0) in the frequency of campylobacteriosis in those receiving rifaximin (86.7%) or placebo (84.6%). Additionally, there were no differences in the clinical signs and symptoms of C. jejuni infection to include abdominal pain/cramps (P = 1.0), nausea (P = 1.0), vomiting (P = .2), or fever (P = 1.0) across study groups. Immune responses to the CG8421 strain were comparable across treatment groups. Conclusions: Rifaximin did not prevent campylobacteriosis in this controlled human infection model. Given the morbidity associated with Campylobacter infection, primary prevention efforts remain a significant need. Clinical Trials Registration: NCT02280044.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones por Campylobacter/prevención & control , Quimioprevención , Rifaximina/uso terapéutico , Adulto , Antibacterianos/administración & dosificación , Azitromicina/uso terapéutico , Campylobacter jejuni , Ciprofloxacina/uso terapéutico , Diarrea/prevención & control , Método Doble Ciego , Femenino , Voluntarios Sanos , Experimentación Humana , Humanos , Masculino , Rifaximina/administración & dosificación , Adulto Joven
19.
Proteomics ; 17(23-24)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28961394

RESUMEN

Plants exposed to patho-stress mostly succumb due to disease by disruption of cellular integrity and changes in the composition of the extracellular matrix (ECM). Vascular wilt, caused by the soil borne hemibiotrophic filamentous fungus Verticillium dahliae, is one of the most significant diseases that adversely affect plant growth and productivity. The virulence of the pathogen associated with the ECM-related susceptibility of the host plant is far from being understood. To better understand ECM-associated disease responses that allow the pathogen to suppress plant immunity, a temporal analysis of ECM proteome was carried out in vascular wilt susceptible potato cultivar upon V. dahliae infection. The proteome profiling led to the identification of 75 patho-stress responsive proteins (PSRPs), predominantly involved in wall hydration, architecture, and redox homeostasis. Two novel clues regarding wilt disease of potato were gained from this study. First, wall crosslinking and salicylic acid signaling significantly altered during patho-stress. Second, generation of reactive oxygen species and scavenging proteins increased in abundance leading to cell death and necrosis of the host. We provide evidence for the first time that how fungal invasion affects the integrity of ECM components and host reprogramming for susceptibility may function at the cell surface by protein plasticity.


Asunto(s)
Matriz Extracelular/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Solanum tuberosum , Verticillium/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo
20.
Proteomics ; 17(23-24)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29144021

RESUMEN

Extracellular matrix (ECM) is the unique organelle that perceives stress signals and reprograms molecular events of host cell during patho-stress. However, our understanding of how ECM dictates plant immunity is largely unknown. Vascular wilt caused by the soil borne filamentous fungus Fusarium oxysporum is a major impediment for global crop productivity. To elucidate the role of ECM proteins and molecular mechanism associated with cell wall mediated immunity, the temporal changes of ECM proteome was studied in vascular wilt resistant chickpea cultivar upon F. oxysporum infection. The 2DE protein profiling coupled with mass spectrometric analysis identified 166 immune responsive proteins (IRPs) involved in variety of functions. Our data suggest that wall remodeling; protein translocation, stabilization, and chitin triggered immunity; and extracellular ATP signaling are major players in early, middle, and later phases of ECM signaling during fungal attack. Furthermore, we interrogated the proteome data using network analysis that identified modules enriched in known and novel immunity-related prognostic proteins centered around nascent aminopolypeptide complex (NAC), amine oxidase, thioredoxin, and chaperonin. This study for the first time provides an insight into the complex network operating in the ECM and impinges on the surveillance mechanism of innate immunity during patho-stress in crop plant.


Asunto(s)
Pared Celular/inmunología , Cicer/inmunología , Proteínas de la Matriz Extracelular/metabolismo , Fusarium/fisiología , Enfermedades de las Plantas/inmunología , Proteómica/métodos , Pared Celular/metabolismo , Pared Celular/microbiología , Cicer/citología , Cicer/metabolismo , Cicer/microbiología , Proteínas de la Matriz Extracelular/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/análisis , Proteínas de Plantas/inmunología , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA