Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Biotechnol J ; 19(12): 2488-2500, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34310022

RESUMEN

Plant genomes demonstrate significant presence/absence variation (PAV) within a species; however, the factors that lead to this variation have not been studied systematically in Brassica across diploids and polyploids. Here, we developed pangenomes of polyploid Brassica napus and its two diploid progenitor genomes B. rapa and B. oleracea to infer how PAV may differ between diploids and polyploids. Modelling of gene loss suggests that loss propensity is primarily associated with transposable elements in the diploids while in B. napus, gene loss propensity is associated with homoeologous recombination. We use these results to gain insights into the different causes of gene loss, both in diploids and following polyploidization, and pave the way for the application of machine learning methods to understanding the underlying biological and physical causes of gene presence/absence.


Asunto(s)
Brassica napus , Brassica , Brassica/genética , Brassica napus/genética , Diploidia , Genoma de Planta/genética , Poliploidía
2.
Plant J ; 92(3): 452-468, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28849613

RESUMEN

Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (Ar ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with Ar , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia.


Asunto(s)
Brassica napus/genética , Brassica/genética , Variación Genética , Genoma de Planta/genética , Genómica , Secuencia de Aminoácidos , Evolución Biológica , Cruzamiento , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Poliploidía , Alineación de Secuencia , Análisis de Secuencia de ADN
3.
Plant Biotechnol J ; 16(7): 1265-1274, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29205771

RESUMEN

Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.


Asunto(s)
Brassica napus/genética , Conversión Génica/genética , Genes de Plantas/genética , Diploidia , Eliminación de Gen , Duplicación de Gen , Variación Genética/genética , Genoma de Planta/genética , Carácter Cuantitativo Heredable
4.
Plant Biotechnol J ; 15(12): 1602-1610, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28403535

RESUMEN

As an increasing number of plant genome sequences become available, it is clear that gene content varies between individuals, and the challenge arises to predict the gene content of a species. However, genome comparison is often confounded by variation in assembly and annotation. Differentiating between true gene absence and variation in assembly or annotation is essential for the accurate identification of conserved and variable genes in a species. Here, we present the de novo assembly of the B. napus cultivar Tapidor and comparison with an improved assembly of the Brassica napus cultivar Darmor-bzh. Both cultivars were annotated using the same method to allow comparison of gene content. We identified genes unique to each cultivar and differentiate these from artefacts due to variation in the assembly and annotation. We demonstrate that using a common annotation pipeline can result in different gene predictions, even for closely related cultivars, and repeat regions which collapse during assembly impact whole genome comparison. After accounting for differences in assembly and annotation, we demonstrate that the genome of Darmor-bzh contains a greater number of genes than the genome of Tapidor. Our results are the first step towards comparison of the true differences between B. napus genomes and highlight the potential sources of error in future production of a B. napus pangenome.


Asunto(s)
Genoma de Planta , Brassica napus/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Anotación de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos
5.
BMC Genomics ; 17: 18, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26728943

RESUMEN

BACKGROUND: There are three basic Brassica genomes (A, B, and C) and three parallel sets of subgenomes distinguished in the diploid Brassica (i.e.: B. rapa, A(r)A(r); B. nigra, B(ni)B(ni); B. oleracea, C(o)C(o)) and the derived allotetraploid species (i.e.: B. juncea, A(j)A(j)B(j)B(j); B. napus, A(n)A(n)C(n)C(n); B. carinata, B(c)B(c)C(c)C(c)). To understand subgenome differentiation in B. juncea in comparison to other A genome-carrying Brassica species (B. rapa and B. napus), we constructed a dense genetic linkage map of B. juncea, and conducted population genetic analysis on diverse lines of the three A-genome carrying Brassica species using a genotyping-by-sequencing approach (DArT-seq). RESULTS: A dense genetic linkage map of B. juncea was constructed using an F2 population derived from Sichuan Yellow/Purple Mustard. The map included 3329 DArT-seq markers on 18 linkage groups and covered 1579 cM with an average density of two markers per cM. Based on this map and the alignment of the marker sequences with the physical genome of Arabidopsis thaliana, we observed strong co-linearity of the ancestral blocks among the different A subgenomes but also considerable block variation. Comparative analyses at the level of genome sequences of B. rapa and B. napus, and marker sequence anchored on the genetic map of B. juncea, revealed a total of 30 potential inversion events across large segments and 20 potential translocation events among the three A subgenomes. Population genetic analysis on 26 accessions of the three A genome-carrying Brassica species showed that the highest genetic distance were estimated when comparing A(j)-A(n) than between A(n)-A(r) and A(j)-A(r) subgenome pairs. CONCLUSIONS: The development of the dense genetic linkage map of B. juncea with informative DArT-seq marker sequences and availability of the reference sequences of the A(r), and A(n)C(n) genomes allowed us to compare the A subgenome structure of B. juncea (A(j)) . Our results suggest that strong co-linearity exists among the three A Brassica genomes (A(r), A(n) and A(j)) but with apparent subgenomic variation. Population genetic analysis on three A-genome carrying Brassica species support the idea that B. juncea has distinct genomic diversity, and/or evolved from a different A genome progenitor of B. napus.


Asunto(s)
Brassica napus/genética , Genoma de Planta/genética , Planta de la Mostaza/genética , Sitios de Carácter Cuantitativo/genética , Arabidopsis/genética , Mapeo Cromosómico , Diploidia , Ligamiento Genético , Genotipo , Repeticiones de Microsatélite/genética , Análisis de Secuencia de ADN
6.
Mol Biol Evol ; 31(7): 1724-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24694832

RESUMEN

Meiosis, the basis of sex, evolved through iterative gene duplications. To understand whether subsequent duplications have further enriched the core meiotic "tool-kit," we investigated the fate of meiotic gene duplicates following whole genome duplication (WGD), a common occurrence in eukaryotes. We show that meiotic genes return to a single copy more rapidly than genome-wide average in angiosperms, one of the lineages in which WGD is most vividly exemplified. The rate at which duplicates are lost decreases through time, a tendency that is also observed genome-wide and may thus prove to be a general trend post-WGD. The sharpest decline is observed for the subset of genes mediating meiotic recombination; however, we found no evidence that the presence of these duplicates is counterselected in two recent polyploid crops selected for fertility. We therefore propose that their loss is passive, highlighting how quickly WGDs are resolved in the absence of selective duplicate retention.


Asunto(s)
Magnoliopsida/genética , Meiosis , Evolución Molecular , Duplicación de Gen , Genoma de Planta , Recombinación Homóloga
7.
J Exp Bot ; 66(22): 7241-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26357884

RESUMEN

The recently published genome of Brassica napus offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two B. napus cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced B. napus genome, together with genomes of its progenitors Brassica rapa and Brassica oleracea. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of MIRNAs (75.9%) between the subgenomes of B. napus and its two progenitors' genomes, and MIRNA lost/gain events (133) occurred in B. napus after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in B. napus was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of B. napus MIRNAs.


Asunto(s)
Brassica napus/genética , MicroARNs/biosíntesis , ARN de Planta/biosíntesis , Brassica rapa/genética , Mapeo Cromosómico , Evolución Molecular , Genoma de Planta , Especificidad de la Especie
8.
Plant Cell ; 24(12): 4875-91, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23277363

RESUMEN

In the allopolyploid Brassica napus, we obtained a petal-closed flower mutation by ethyl methanesulfonate mutagenesis. Here, we report cloning and characterization of the Bn-CLG1A (CLG for cleistogamy) gene and the Bn-clg1A-1D mutant allele responsible for the cleistogamy phenotype. Bn-CLG1A encodes a RINGv E3 ubiquitin ligase that is highly conserved across eukaryotes. In the Bn-clg1A-1D mutant allele, a C-to-T transition converts a Pro at position 325 to a Leu (P325L), causing a dominant mutation leading to cleistogamy. B. napus and Arabidopsis thaliana plants transformed with a Bn-clg1A-1D allele show cleistogamous flowers, and characterization of these flowers suggests that the Bn-clg1A-1D mutation causes a pronounced negative regulation of cutin biosynthesis or loading and affects elongation or differentiation of petal and sepal cells. This results in an inhibition or a delay of petal development, leading to folded petals. A homoeologous gene (Bn-CLG1C), which shows 99.5% amino acid identity and is also constitutively and equally expressed to the wild-type Bn-CLG1A gene, was also identified. We showed that P325L is not a loss-of-function mutation and did not affect expression of Bn-clg1A-1D or Bn-CLG1C. Our findings suggest that P325L is a gain-of-function semidominant mutation, which led to either hyper- or neofunctionalization of a redundant homoeologous gene.


Asunto(s)
Brassica napus/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Brassica napus/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Mutación Puntual/genética , Mutación Puntual/fisiología , Ubiquitina-Proteína Ligasas/genética
9.
J Exp Bot ; 65(14): 3927-47, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24567494

RESUMEN

A total of 16 BnaGLN1 genes coding for cytosolic glutamine synthetase isoforms (EC 6.3.1.2.) were found in the Brassica napus genome. The total number of BnaGLN1 genes, their phylogenetic relationships, and genetic locations are in agreement with the evolutionary history of Brassica species. Two BnaGLN1.1, two BnaGLN1.2, six BnaGLN1.3, four BnaGLN1.4, and two BnaGLN1.5 genes were found and named according to the standardized nomenclature for the Brassica genus. Gene expression showed conserved responses to nitrogen availability and leaf senescence among the Brassiceae tribe. The BnaGLN1.1 and BnaGLN1.4 families are overexpressed during leaf senescence and in response to nitrogen limitation. The BnaGLN1.2 family is up-regulated under high nitrogen regimes. The members of the BnaGLN1.3 family are not affected by nitrogen availability and are more expressed in stems than in leaves. Expression of the two BnaGLN1.5 genes is almost undetectable in vegetative tissues. Regulations arising from plant interactions with their environment (such as nitrogen resources), final architecture, and therefore sink-source relations in planta, seem to be globally conserved between Arabidopsis and B. napus. Similarities of the coding sequence (CDS) and protein sequences, expression profiles, response to nitrogen availability, and ageing suggest that the roles of the different GLN1 families have been conserved among the Brassiceae tribe. These findings are encouraging the transfer of knowledge from the Arabidopsis model plant to the B. napus crop plant. They are of special interest when considering the role of glutamine synthetase in crop yield and grain quality in maize and wheat.


Asunto(s)
Brassica napus/enzimología , Brassica napus/genética , Citosol/enzimología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Nitrógeno/farmacología , Hojas de la Planta/crecimiento & desarrollo , Secuencia de Aminoácidos , Brassica napus/efectos de los fármacos , Brassica rapa/enzimología , Brassica rapa/genética , Mapeo Cromosómico , Secuencia Conservada , Bases de Datos de Ácidos Nucleicos , Etiquetas de Secuencia Expresada , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Sitios Genéticos , Glutamato-Amoníaco Ligasa/química , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Nitratos/farmacología , Sistemas de Lectura Abierta/genética , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción/genética , Alineación de Secuencia
10.
Proc Natl Acad Sci U S A ; 108(46): 18737-42, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22042872

RESUMEN

The Q gene encodes an AP2-like transcription factor that played an important role in domestication of polyploid wheat. The chromosome 5A Q alleles (5AQ and 5Aq) have been well studied, but much less is known about the q alleles on wheat homoeologous chromosomes 5B (5Bq) and 5D (5Dq). We investigated the organization, evolution, and function of the Q/q homoeoalleles in hexaploid wheat (Triticum aestivum L.). Q/q gene sequences are highly conserved within and among the A, B, and D genomes of hexaploid wheat, the A and B genomes of tetraploid wheat, and the A, S, and D genomes of the diploid progenitors, but the intergenic regions of the Q/q locus are highly divergent among homoeologous genomes. Duplication of the q gene 5.8 Mya was likely followed by selective loss of one of the copies from the A genome progenitor and the other copy from the B, D, and S genomes. A recent V(329)-to-I mutation in the A lineage is correlated with the Q phenotype. The 5Bq homoeoalleles became a pseudogene after allotetraploidization. Expression analysis indicated that the homoeoalleles are coregulated in a complex manner. Combined phenotypic and expression analysis indicated that, whereas 5AQ plays a major role in conferring domestication-related traits, 5Dq contributes directly and 5Bq indirectly to suppression of the speltoid phenotype. The evolution of the Q/q loci in polyploid wheat resulted in the hyperfunctionalization of 5AQ, pseudogenization of 5Bq, and subfunctionalization of 5Dq, all contributing to the domestication traits.


Asunto(s)
Cromosomas/genética , Evolución Molecular , Genoma de Planta , Poliploidía , Triticum/genética , Regiones no Traducidas 3' , Alelos , Exones , Duplicación de Gen , Intrones , Modelos Genéticos , Mutación , Fenotipo , Ploidias , ARN Mensajero/metabolismo
11.
New Phytol ; 197(3): 730-736, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23278496

RESUMEN

The reprogramming of gene expression appears as the major trend in synthetic and natural allopolyploids where expression of an important proportion of genes was shown to deviate from that of the parents or the average of the parents. In this study, we analyzed gene expression changes in previously reported, highly stable synthetic wheat allohexaploids that combine the D genome of Aegilops tauschii and the AB genome extracted from the natural hexaploid wheat Triticum aestivum. A comprehensive genome-wide analysis of transcriptional changes using the Affymetrix GeneChip Wheat Genome Array was conducted. Prevalence of gene expression additivity was observed where expression does not deviate from the average of the parents for 99.3% of 34,820 expressed transcripts. Moreover, nearly similar expression was observed (for 99.5% of genes) when comparing these synthetic and natural wheat allohexaploids. Such near-complete additivity has never been reported for other allopolyploids and, more interestingly, for other synthetic wheat allohexaploids that differ from the ones studied here by having the natural tetraploid Triticum turgidum as the AB genome progenitor. Our study gave insights into the dynamics of additive gene expression in the highly stable wheat allohexaploids.


Asunto(s)
Poliploidía , Triticum/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Inestabilidad Genómica
12.
Nat Rev Genet ; 8(12): 973-82, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17984973

RESUMEN

Our knowledge of the structure and composition of genomes is rapidly progressing in pace with their sequencing. The emerging data show that a significant portion of eukaryotic genomes is composed of transposable elements (TEs). Given the abundance and diversity of TEs and the speed at which large quantities of sequence data are emerging, identification and annotation of TEs presents a significant challenge. Here we propose the first unified hierarchical classification system, designed on the basis of the transposition mechanism, sequence similarities and structural relationships, that can be easily applied by non-experts. The system and nomenclature is kept up to date at the WikiPoson web site.


Asunto(s)
Elementos Transponibles de ADN/genética , Células Eucariotas/fisiología , Terminología como Asunto , Animales
13.
Genetics ; 223(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36218464

RESUMEN

The "genomic shock" hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession "Bhyb26." We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species' similarity in transposable element load may account for the subtlety of the observed genome dominance.


Asunto(s)
Brachypodium , Brachypodium/genética , Elementos Transponibles de ADN , Diploidia , Genómica , Poliploidía , Genoma de Planta , Evolución Molecular
14.
Plant Physiol ; 156(2): 779-92, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21482634

RESUMEN

Root-knot nematode (RKN) Meloidogyne species are major polyphagous pests of most crops worldwide, and cultivars with durable resistance are urgently needed because of nematicide bans. The Ma gene from the Myrobalan plum (Prunus cerasifera) confers complete-spectrum, heat-stable, and high-level resistance to RKN, which is remarkable in comparison with the Mi-1 gene from tomato (Solanum lycopersicum), the sole RKN resistance gene cloned. We report here the positional cloning and the functional validation of the Ma locus present at the heterozygous state in the P.2175 accession. High-resolution mapping totaling over 3,000 segregants reduced the Ma locus interval to a 32-kb cluster of three Toll/Interleukin1 Receptor-Nucleotide Binding Site-Leucine-Rich Repeat (LRR) genes (TNL1-TNL3), including a pseudogene (TNL2) and a truncated gene (TNL3). The sole complete gene in this interval (TNL1) was validated as Ma, as it conferred the same complete-spectrum and high-level resistance (as in P.2175) using its genomic sequence and native promoter region in Agrobacterium rhizogenes-transformed hairy roots and composite plants. The full-length cDNA (2,048 amino acids) of Ma is the longest of all Resistance genes cloned to date. Its TNL structure is completed by a huge post-LRR (PL) sequence (1,088 amino acids) comprising five repeated carboxyl-terminal PL exons with two conserved motifs. The amino-terminal region (213 amino acids) of the LRR exon is conserved between alleles and contrasts with the high interallelic polymorphisms of its distal region (111 amino acids) and of PL domains. The Ma gene highlights the importance of these uncharacterized PL domains, which may be involved in pathogen recognition through the decoy hypothesis or in nuclear signaling.


Asunto(s)
Genes de Plantas/genética , Inmunidad Innata/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/química , Prunus/genética , Prunus/parasitología , Tylenchoidea/fisiología , Alelos , Secuencia de Aminoácidos , Animales , Cromosomas Artificiales Bacterianos/genética , Exones/genética , Estudios de Asociación Genética , Prueba de Complementación Genética , Sitios Genéticos/genética , Intrones/genética , Proteínas Repetidas Ricas en Leucina , Datos de Secuencia Molecular , Familia de Multigenes/genética , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/inmunología , Raíces de Plantas/parasitología , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , Proteínas/química , Prunus/inmunología , Secuencias Repetitivas de Aminoácido/genética , Reproducibilidad de los Resultados , Especificidad de la Especie
15.
Funct Integr Genomics ; 11(4): 565-83, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21656015

RESUMEN

Transcriptomic and metabolomic profiles were used to unravel drought adaptation mechanisms in wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of cultivated wheat, by comparing the response to drought stress in roots of genotypes contrasting in drought tolerance. The differences between the drought resistant (R) and drought susceptible (S) genotypes were characterized mainly by shifts in expression of hormone-related genes (e.g., gibberellins, abscisic acid (ABA) and auxin), including biosynthesis, signalling and response; RNA binding; calcium (calmodulin, caleosin and annexin) and phosphatidylinositol signalling, in the R genotype. ABA content in the roots of the R genotype was higher in the well-watered treatment and increased in response to drought, while in the S genotype ABA was invariant. The metabolomic profiling revealed in the R genotype a higher accumulation of tricarboxylic acid cycle intermediates and drought-related metabolites, including glucose, trehalose, proline and glycine. The integration of transcriptomics and metabolomics results indicated that adaptation to drought included efficient regulation and signalling pathways leading to effective bio-energetic processes, carbon metabolism and cell homeostasis. In conclusion, mechanisms of drought tolerance were identified in roots of wild emmer wheat, supporting our previous studies on the potential of this genepool as a valuable source for novel candidate genes to improve drought tolerance in cultivated wheat.


Asunto(s)
Adaptación Fisiológica/genética , Vías Biosintéticas/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/biosíntesis , Raíces de Plantas/genética , Triticum/genética , Señalización del Calcio , Expresión Génica , Perfilación de la Expresión Génica , Genes de Plantas , Metaboloma , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Estrés Fisiológico , Triticum/metabolismo , Triticum/fisiología
16.
BMC Plant Biol ; 11: 99, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21635794

RESUMEN

BACKGROUND: Transposable elements (TEs) are a rapidly evolving fraction of the eukaryotic genomes and the main contributors to genome plasticity and divergence. Recently, occupation of the A- and D-genomes of allopolyploid wheat by specific TE families was demonstrated. Here, we investigated the impact of the well-represented family of gypsy LTR-retrotransposons, Fatima, on B-genome divergence of allopolyploid wheat using the fluorescent in situ hybridisation (FISH) method and phylogenetic analysis. RESULTS: FISH analysis of a BAC clone (BAC_2383A24) initially screened with Spelt1 repeats demonstrated its predominant localisation to chromosomes of the B-genome and its putative diploid progenitor Aegilops speltoides in hexaploid (genomic formula, BBAADD) and tetraploid (genomic formula, BBAA) wheats as well as their diploid progenitors. Analysis of the complete BAC_2383A24 nucleotide sequence (113,605 bp) demonstrated that it contains 55.6% TEs, 0.9% subtelomeric tandem repeats (Spelt1), and five genes. LTR retrotransposons are predominant, representing 50.7% of the total nucleotide sequence. Three elements of the gypsy LTR retrotransposon family Fatima make up 47.2% of all the LTR retrotransposons in this BAC. In situ hybridisation of the Fatima_2383A24-3 subclone suggests that individual representatives of the Fatima family contribute to the majority of the B-genome specific FISH pattern for BAC_2383A24. Phylogenetic analysis of various Fatima elements available from databases in combination with the data on their insertion dates demonstrated that the Fatima elements fall into several groups. One of these groups, containing Fatima_2383A24-3, is more specific to the B-genome and proliferated around 0.5-2.5 MYA, prior to allopolyploid wheat formation. CONCLUSION: The B-genome specificity of the gypsy-like Fatima, as determined by FISH, is explained to a great degree by the appearance of a genome-specific element within this family for Ae. speltoides. Moreover, its proliferation mainly occurred in this diploid species before it entered into allopolyploidy.Most likely, this scenario of emergence and proliferation of the genome-specific variants of retroelements, mainly in the diploid species, is characteristic of the evolution of all three genomes of hexaploid wheat.


Asunto(s)
Evolución Molecular , Genoma de Planta , Retroelementos , Triticum/genética , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Diploidia , Genes de Plantas , Biblioteca Genómica , Hibridación Fluorescente in Situ , Metafase , Filogenia , Poliploidía , Translocación Genética , Triticum/clasificación
17.
New Phytol ; 192(1): 151-163, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21658182

RESUMEN

• R(US) is a major dominant gene controlling quantitative resistance, inherited from Populus trichocarpa, whereas R(1) is a gene governing qualitative resistance, inherited from P. deltoides. • Here, we report a reiterative process of concomitant fine-scale genetic and physical mapping guided by the P. trichocarpa genome sequence. The high-resolution linkage maps were developed using a P. deltoides × P. trichocarpa progeny of 1415 individuals. R(US) and R(1) were mapped in a peritelomeric region of chromosome 19. Markers closely linked to R(US) were used to screen a bacterial artificial chromosome (BAC) library constructed from the P. trichocarpa parent, heterozygous at the locus R(US) . • Two local physical maps were developed, one encompassing the R(US) allele and the other spanning r(US) . The alignment of the two haplophysical maps showed structural differences between haplotypes. The genetic and physical maps were anchored to the genome sequence, revealing genome sequence misassembly. Finally, the R(US) locus was localized within a 0.8-cM interval, whereas R(1) was localized upstream of R(US) within a 1.1-cM interval. • The alignment of the genetic and physical maps with the local reorder of the chromosome 19 sequence indicated that R(US) and R(1) belonged to a genomic region rich in nucleotide-binding site leucine-rich repeat (NBS-LRR) and serine threonine kinase (STK) genes.


Asunto(s)
Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Genoma de Planta/genética , Nucleótidos/metabolismo , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Populus/genética , Secuencia de Bases , Basidiomycota/fisiología , Sitios de Unión , Cruzamientos Genéticos , Genes de Plantas/genética , Ligamiento Genético , Sitios Genéticos/genética , Marcadores Genéticos , Haplotipos/genética , Proteínas Repetidas Ricas en Leucina , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas/genética
18.
Plants (Basel) ; 10(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34961171

RESUMEN

The YABBY gene family is one of the plant transcription factors present in all seed plants. The family members were extensively studied in various plants and shown to play important roles in plant growth and development, such as the polarity establishment in lateral organs, the formation and development of leaves and flowers, and the response to internal plant hormone and external environmental stress signals. In this study, a total of 364 YABBY genes were identified from 37 Brassicaceae genomes, of which 15 were incomplete due to sequence gaps, and nine were imperfect (missing C2C2 zinc-finger or YABBY domain) due to sequence mutations. Phylogenetic analyses resolved these YABBY genes into six compact clades except for a YAB3-like gene identified in Aethionema arabicum. Seventeen Brassicaceae species each contained a complete set of six basic YABBY genes (i.e., 1 FIL, 1 YAB2, 1 YAB3, 1 YAB5, 1 INO and 1 CRC), while 20 others each contained a variable number of YABBY genes (5-25) caused mainly by whole-genome duplication/triplication followed by gene losses, and occasionally by tandem duplications. The fate of duplicate YABBY genes changed considerably according to plant species, as well as to YABBY gene type. These YABBY genes were shown to be syntenically conserved across most of the Brassicaceae species, but their functions might be considerably diverged between species, as well as between paralogous copies, as demonstrated by the promoter and expression analysis of YABBY genes in two Brassica species (B. rapa and B. oleracea). Our study provides valuable insights for understanding the evolutionary story of YABBY genes in Brassicaceae and for further functional characterization of each YABBY gene across the Brassicaceae species.

19.
Mol Biol Evol ; 26(7): 1651-61, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19395588

RESUMEN

Together maize, Sorghum, rice, and wheat grass (Poaceae) species are the most important cereal crops in the world and exhibit different "grain endosperm texture." This trait has been studied extensively in wheat because of its pivotal role in determining quality of products obtained from wheat grain. Grain softness protein-1 and Puroindolines A and B (grain storage proteins), encoded by Ha-like genes: Gsp-1, Pina, and Pinb, of the Hardness (Ha) locus, are the main determinants of the grain softness/hardness trait in wheat. The origin and evolution of grain endosperm texture in grasses was addressed by comparing genomic sequences of the Ha orthologous region of wheat, Brachypodium, rice, and Sorghum. Results show that the Ha-like genes are present in wheat and Brachypodium but are absent from Sorghum bicolor. A truncated remnant of an Ha-like gene is present in rice. Synteny analysis of the genomes of these grass species shows that only one of the paralogous Ha regions, created 70 My by whole-genome duplication, contained Ha-like genes. The comparative genome analysis and evolutionary comparison with genes encoding grain reserve proteins of grasses suggest that an ancestral Ha-like gene emerged, as a new member of the prolamin gene family, in a common ancestor of the Pooideae (Triticeae and Brachypoidieae tribes) and Ehrhartoideae (rice), between 60 and 50 My, after their divergence from Panicoideae (Sorghum). It was subsequently lost in Ehrhartoideae. Recurring duplications, deletions, and/or truncations occurred independently and appear to characterize Ha-like gene evolution in the grass species. The Ha-like genes gained a new function in Triticeae, such as wheat, underlying the soft grain phenotype. Loss of these genes in some wheat species leads, in turn, to hard endosperm seeds.


Asunto(s)
Evolución Biológica , Genes de Plantas , Poaceae/genética , Evolución Molecular , Datos de Secuencia Molecular , Oryza/genética , Filogenia , Sorghum/genética , Triticum/genética
20.
Funct Integr Genomics ; 10(2): 167-86, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20333536

RESUMEN

Low water availability is the major environmental factor limiting crop productivity. Transcriptome analysis was used to study terminal drought response in wild emmer wheat, Triticum dicoccoides, genotypes contrasting in their productivity and yield stability under drought stress. A total of 5,892 differentially regulated transcripts were identified between drought and well-watered control and/or between drought resistant (R) and drought susceptible (S) genotypes. Functional enrichment analyses revealed that multilevel regulatory and signalling processes were significantly enriched among the drought-induced transcripts, in particular in the R genotype. Therefore, further analyses were focused on selected 221 uniquely expressed or highly abundant transcripts in the R genotype, as potential candidates for drought resistance genes. Annotation of the 221 genes revealed that 26% of them are involved in multilevel regulation, including: transcriptional regulation, RNA binding, kinase activity and calcium and abscisic acid signalling implicated in stomatal closure. Differential expression patterns were also identified in genes known to be involved in drought adaptation pathways, such as: cell wall adjustment, cuticular wax deposition, lignification, osmoregulation, redox homeostasis, dehydration protection and drought-induced senescence. These results demonstrate the potential of wild emmer wheat as a source for candidate genes for improving drought resistance.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Transducción de Señal/genética , Triticum/genética , Ácido Abscísico/metabolismo , Senescencia Celular , Genes de Plantas/genética , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estomas de Plantas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Triticum/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA