Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 20(11): e47967, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31566294

RESUMEN

Dystroglycan, an extracellular matrix receptor, has essential functions in various tissues. Loss of α-dystroglycan-laminin interaction due to defective glycosylation of α-dystroglycan underlies a group of congenital muscular dystrophies often associated with brain malformations, referred to as dystroglycanopathies. The lack of isogenic human dystroglycanopathy cell models has limited our ability to test potential drugs in a human- and neural-specific context. Here, we generated induced pluripotent stem cells (iPSCs) from a severe dystroglycanopathy patient with homozygous FKRP (fukutin-related protein gene) mutation. We showed that CRISPR/Cas9-mediated gene correction of FKRP restored glycosylation of α-dystroglycan in iPSC-derived cortical neurons, whereas targeted gene mutation of FKRP in wild-type cells disrupted this glycosylation. In parallel, we screened 31,954 small molecule compounds using a mouse myoblast line for increased glycosylation of α-dystroglycan. Using human FKRP-iPSC-derived neural cells for hit validation, we demonstrated that compound 4-(4-bromophenyl)-6-ethylsulfanyl-2-oxo-3,4-dihydro-1H-pyridine-5-carbonitrile (4BPPNit) significantly augmented glycosylation of α-dystroglycan, in part through upregulation of LARGE1 glycosyltransferase gene expression. Together, isogenic human iPSC-derived cells represent a valuable platform for facilitating dystroglycanopathy drug discovery and therapeutic development.


Asunto(s)
Evaluación Preclínica de Medicamentos , Distroglicanos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Distroglicanos/genética , Edición Génica , Marcación de Gen , Sitios Genéticos , Glicosilación/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen Molecular , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/etiología , Distrofias Musculares/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo
2.
Redox Biol ; 28: 101318, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31546169

RESUMEN

Aurora A kinase is a master mitotic regulator whose functions are controlled by several regulatory interactions and post-translational modifications. It is frequently dysregulated in cancer, making Aurora A inhibition a very attractive antitumor target. However, recently uncovered links between Aurora A, cellular metabolism and redox regulation are not well understood. In this study, we report a novel mechanism of Aurora A regulation in the cellular response to oxidative stress through CoAlation. A combination of biochemical, biophysical, crystallographic and cell biology approaches revealed a new and, to our knowledge, unique mode of Aurora A inhibition by CoA, involving selective binding of the ADP moiety of CoA to the ATP binding pocket and covalent modification of Cys290 in the activation loop by the thiol group of the pantetheine tail. We provide evidence that covalent CoA modification (CoAlation) of Aurora A is specific, and that it can be induced by oxidative stress in human cells. Oxidising agents, such as diamide, hydrogen peroxide and menadione were found to induce Thr 288 phosphorylation and DTT-dependent dimerization of Aurora A. Moreover, microinjection of CoA into fertilized mouse embryos disrupts bipolar spindle formation and the alignment of chromosomes, consistent with Aurora A inhibition. Altogether, our data reveal CoA as a new, rather selective, inhibitor of Aurora A, which locks this kinase in an inactive state via a "dual anchor" mechanism of inhibition that might also operate in cellular response to oxidative stress. Finally and most importantly, we believe that these novel findings provide a new rationale for developing effective and irreversible inhibitors of Aurora A, and perhaps other protein kinases containing appropriately conserved Cys residues.


Asunto(s)
Aurora Quinasa A/química , Aurora Quinasa A/metabolismo , Coenzima A/administración & dosificación , Animales , Coenzima A/química , Coenzima A/farmacología , Cristalografía por Rayos X , Células HEK293 , Células Hep G2 , Humanos , Ratones , Modelos Moleculares , Estrés Oxidativo , Fosforilación , Conformación Proteica , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA