Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 32(1): 62-7, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22219270

RESUMEN

GABAergic signaling in hippocampal pyramidal neurons undergoes a switch from depolarizing to hyperpolarizing during early neuronal development. Whether such a transformation of GABAergic action occurs in dentate granule cells (DGCs), located at the first stage of the hippocampal trisynaptic circuit, is unclear. Here, we use noninvasive extracellular recording to monitor the effect of synaptically released GABA on the DGC population. We find that GABAergic responses in adolescent and adult rat DGCs are still depolarizing from rest. Using a morphologically realistic DGC model, we show that GABAergic action, depending on its precise timing and location, can have either an excitatory or inhibitory role in signal processing in the dentate gyrus.


Asunto(s)
Potenciales de Acción/fisiología , Giro Dentado/crecimiento & desarrollo , Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología , Envejecimiento/fisiología , Animales , Giro Dentado/citología , Masculino , Modelos Neurológicos , Neuronas/citología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
2.
J Physiol ; 591(19): 4843-58, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23940377

RESUMEN

Glutamatergic transmission onto oligodendrocyte precursor cells (OPCs) may regulate OPC proliferation, migration and differentiation. Dendritic integration of excitatory postsynaptic potentials (EPSPs) is critical for neuronal functions, and mechanisms regulating dendritic propagation and summation of EPSPs are well understood. However, little is known about EPSP attenuation and integration in OPCs. We developed realistic OPC models for synaptic integration, based on passive membrane responses of OPCs obtained by simultaneous dual whole-cell patch-pipette recordings. Compared with neurons, OPCs have a very low value of membrane resistivity, which is largely mediated by Ba(2+)- and bupivacaine-sensitive background K(+) conductances. The very low membrane resistivity not only leads to rapid EPSP attenuation along OPC processes but also sharpens EPSPs and narrows the temporal window for EPSP summation. Thus, background K(+) conductances regulate synaptic responses and integration in OPCs, thereby affecting activity-dependent neuronal control of OPC development and function.


Asunto(s)
Bario/farmacología , Bupivacaína/farmacología , Potenciales Postsinápticos Excitadores , Células-Madre Neurales/fisiología , Oligodendroglía/fisiología , Potasio/metabolismo , Animales , Masculino , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Oligodendroglía/metabolismo , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA