Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 323, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080084

RESUMEN

Autophagy is a highly conserved catabolic mechanism by which unnecessary or dysfunctional cellular components are removed. The dysregulation of autophagy has been implicated in various neurodegenerative diseases, including Alzheimer's disease (AD). Understanding the molecular mechanism(s)/molecules that influence autophagy may provide important insights into developing therapeutic strategies against AD and other neurodegenerative disorders. Engulfment adaptor phosphotyrosine-binding domain-containing protein 1 (GULP1) is an adaptor that interacts with amyloid precursor protein (APP) to promote amyloid-ß peptide production via an unidentified mechanism. Emerging evidence suggests that GULP1 has a role in autophagy. Here, we show that GULP1 is involved in autophagy through an interaction with autophagy-related 14 (ATG14), which is a regulator of autophagosome formation. GULP1 potentiated the stimulatory effect of ATG14 on autophagy by modulating class III phosphatidylinositol 3-kinase complex 1 (PI3KC3-C1) activity. The effect of GULP1 is attenuated by a GULP1 mutation (GULP1m) that disrupts the GULP1-ATG14 interaction. Conversely, PI3KC3-C1 activity is enhanced in cells expressing APP but not in those expressing an APP mutant that does not bind GULP1, which suggests a role of GULP1-APP in regulating PI3KC3-C1 activity. Notably, GULP1 facilitates the targeting of ATG14 to the endoplasmic reticulum (ER). Moreover, the levels of both ATG14 and APP are elevated in the autophagic vacuoles (AVs) of cells expressing GULP1, but not in those expressing GULP1m. APP processing is markedly enhanced in cells co-expressing GULP1 and ATG14. Hence, GULP1 alters APP processing by promoting the entry of APP into AVs. In summary, we unveil a novel role of GULP1 in enhancing the targeting of ATG14 to the ER to stimulate autophagy and, consequently, APP processing.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Precursor de Proteína beta-Amiloide , Proteínas Relacionadas con la Autofagia , Autofagia , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Células HEK293 , Unión Proteica , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética
2.
Clin Exp Pharmacol Physiol ; 51(1): 30-39, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37933553

RESUMEN

Spinocerebellar ataxia 3 (SCA3) is an incurable, neurodegenerative genetic disorder that leads to progressive cerebellar ataxia and other parkinsonian-like pathologies because of loss of cerebellar neurons. The role of an expanded polyglutamine aggregate on neural progenitor cells is unknown. Here, we show that SCA3 patient-specific induced neural progenitor cells (iNPCs) exhibit proliferative defects. Moreover, SCA3 iNPCs have reduced autophagic expression compared to control. Furthermore, although SCA3 iNPCs continue to proliferate, they do not survive subsequent passages compared to control iNPCs, indicating the likelihood that SCA3 iNPCs undergo rapid senescence. Exposure to interleukin-4 (IL-4), a type 2 cytokine produced by immune cells, resulted in an observed increase in expression of autophagic programs and a reduction in the proliferation defect observed in SCA3 iNPCs. Our results indicate a previously unobserved role of SCA3 disease ontology on the neural stem cell pool and a potential therapeutic strategy using IL-4 to ameliorate or delay disease pathology in the SCA3 neural progenitor cell population.


Asunto(s)
Enfermedad de Machado-Joseph , Células-Madre Neurales , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Interleucina-4 , Citocinas/metabolismo , Factor de Transcripción STAT6/metabolismo
3.
Nucleic Acids Res ; 50(13): 7655-7668, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35776134

RESUMEN

Polyglutamine (polyQ) diseases are a type of inherited neurodegenerative disorders caused by cytosine-adenine-guanine (CAG) trinucleotide expansion within the coding region of the disease-associated genes. We previously demonstrated that a pathogenic interaction between expanded CAG RNA and the nucleolin (NCL) protein triggers the nucleolar stress and neuronal cell death in polyQ diseases. However, mechanisms behind the molecular interaction remain unknown. Here, we report a 1.45 Å crystal structure of the r(CAG)5 oligo that comprises a full A'-form helical turn with widened grooves. Based on this structure, we simulated a model of r(CAG)5 RNA complexed with the RNA recognition motif 2 (RRM2) of NCL and identified NCL residues that are critical for its binding to CAG RNA. Combined with in vitro and in vivo site-directed mutagenesis studies, our model reveals that CAG RNA binds to NCL sites that are not important for other cellular functions like gene expression and rRNA synthesis regulation, indicating that toxic CAG RNA interferes with NCL functions by sequestering it. Accordingly, an NCL mutant that is aberrant in CAG RNA-binding could rescue RNA-induced cytotoxicity effectively. Taken together, our study provides new molecular insights into the pathogenic mechanism of polyQ diseases mediated by NCL-CAG RNA interaction.


Asunto(s)
Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , ARN , Repeticiones de Trinucleótidos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Oligonucleótidos/metabolismo , Péptidos , ARN/genética , Nucleolina
4.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33947817

RESUMEN

DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.


Asunto(s)
Apoptosis/genética , Daño del ADN , Enfermedad de Huntington/genética , Péptidos/genética , Pirofosfatasas/genética , ARN/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Apoptosis/efectos de los fármacos , Benzamidinas/metabolismo , Benzamidinas/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/prevención & control , Ratones Endogámicos C57BL , Ratones Transgénicos , Simulación de Dinámica Molecular , Pirofosfatasas/metabolismo , ARN/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Mol Pharm ; 18(2): 610-626, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32584043

RESUMEN

Polyglutamine (polyQ) diseases, such as Huntington's disease and several types of spinocerebellar ataxias, are dominantly inherited progressive neurodegenerative disorders and characterized by the presence of expanded CAG trinucleotide repeats in the respective disease locus of the patient genomes. Patients with polyQ diseases currently need to rely on symptom-relieving treatments because disease-modifying therapeutic interventions remain scarce. Many disease-modifying therapeutic agents are now under clinical testing for treating polyQ diseases, but their delivery to the brain is often too invasive (e.g., intracranial injection) or inefficient, owing to in vivo degradation and clearance by physiological barriers (e.g., oral and intravenous administration). Nanoparticles provide a feasible solution for improving drug delivery to the brain, as evidenced by an increasing number of preclinical studies that document the efficacy of nanomedicines for polyQ diseases over the past 5-6 years. In this review, we present the pathogenic mechanisms of polyQ diseases, the common animal models of polyQ diseases for evaluating the efficacy of nanomedicines, and the common administration routes for delivering nanoparticles to the brain. Next, we summarize the recent preclinical applications of nanomedicines for treating polyQ diseases and improving neurological conditions in vivo, placing emphasis on antisense oligonucleotides, small peptide inhibitors, and small molecules as the disease-modifying agents. We conclude with our perspectives of the burgeoning field of "nanomedicines for polyQ diseases", including the use of inorganic nanoparticles and potential drugs as next-generation nanomedicines, development of higher-order animal models of polyQ diseases, and importance of "brain-nano" interactions.


Asunto(s)
Portadores de Fármacos/química , Enfermedad de Huntington/tratamiento farmacológico , Nanopartículas/química , Fármacos Neuroprotectores/administración & dosificación , Péptidos/antagonistas & inhibidores , Ataxias Espinocerebelosas/tratamiento farmacológico , Administración Intranasal , Administración Oral , Animales , Animales Modificados Genéticamente , Disponibilidad Biológica , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Sitios Genéticos/genética , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Inyecciones Intraventriculares , Inyecciones Espinales , Fármacos Neuroprotectores/farmacocinética , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacocinética , Péptidos/genética , Péptidos/metabolismo , Permeabilidad , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Distribución Tisular , Expansión de Repetición de Trinucleótido
6.
BMC Neurol ; 21(1): 78, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602173

RESUMEN

BACKGROUND: CCDC88C is a ubiquitously expressed protein with multiple functions, including roles in cell polarity and the development of dendrites in the nervous system. Bi-allelic mutations in the CCDC88C gene cause autosomal recessive congenital hydrocephalus (OMIM #236600). Studies recently linked heterozygous mutations in CCDC88C to the development of the late-onset spinocerebellar ataxia type 40 (OMIM #616053). CASE PRESENTATION: A 48-year-old Sudanese female presented with pure early onset hereditary spastic paraplegia. Exome sequencing, in-silico analysis, and Sanger sequencing identified the heterozygous NM_001080414.4:c.1993G > A (p.E665K) variant in CCDC88C as a potential cause of her illness. To explore the pathogenicity of the NM_001080414.4:c.1993G > A (p.E665K) variant, we expressed it in human embryonic kidney 293 cells and assessed its effects on apoptosis. In our experiment, NM_001080414.4:c.1993G > A (p.E665K) induced JNK hyper-phosphorylation and enhanced apoptosis. In contrast to previous reports, our patient developed neurological symptoms in early childhood and showed neither features of cerebellar ataxia, extrapyramidal signs, nor evidence of intellectual involvement. CONCLUSION: We, herein, heighlighted the possibility of extending the phenotype associated with variants in CCDC88C to include early-onset pure hereditary spastic paraplegia.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Microfilamentos/genética , Paraplejía Espástica Hereditaria/genética , Femenino , Heterocigoto , Humanos , Persona de Mediana Edad , Mutación
7.
J Biol Chem ; 294(8): 2757-2770, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30593503

RESUMEN

Polyglutamine (polyQ) diseases are a group of dominantly inherited neurodegenerative disorders caused by the expansion of an unstable CAG repeat in the coding region of the affected genes. Hallmarks of polyQ diseases include the accumulation of misfolded protein aggregates, leading to neuronal degeneration and cell death. PolyQ diseases are currently incurable, highlighting the urgent need for approaches that inhibit the formation of disaggregate cytotoxic polyQ protein inclusions. Here, we screened for bisamidine-based inhibitors that can inhibit neuronal polyQ protein inclusions. We demonstrated that one inhibitor, AQAMAN, prevents polyQ protein aggregation and promotes de-aggregation of self-assembled polyQ proteins in several models of polyQ diseases. Using immunocytochemistry, we found that AQAMAN significantly reduces polyQ protein aggregation and specifically suppresses polyQ protein-induced cell death. Using a recombinant and purified polyQ protein (thioredoxin-Huntingtin-Q46), we further demonstrated that AQAMAN interferes with polyQ self-assembly, preventing polyQ aggregation, and dissociates preformed polyQ aggregates in a cell-free system. Remarkably, AQAMAN feeding of Drosophila expressing expanded polyQ disease protein suppresses polyQ-induced neurodegeneration in vivo In addition, using inhibitors and activators of the autophagy pathway, we demonstrated that AQAMAN's cytoprotective effect against polyQ toxicity is autophagy-dependent. In summary, we have identified AQAMAN as a potential therapeutic for combating polyQ protein toxicity in polyQ diseases. Our findings further highlight the importance of the autophagy pathway in clearing harmful polyQ proteins.


Asunto(s)
Autofagia , Modelos Animales de Enfermedad , Furanos/farmacología , Cuerpos de Inclusión/patología , Enfermedades Neurodegenerativas/prevención & control , Neuronas/patología , Péptidos/metabolismo , Animales , Citoprotección , Drosophila melanogaster/fisiología , Furanos/química , Humanos , Cuerpos de Inclusión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Péptidos/química , Ratas
8.
RNA ; 24(4): 486-498, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29295891

RESUMEN

Polyglutamine (polyQ) diseases are a class of progressive neurodegenerative disorders characterized by the expression of both expanded CAG RNA and misfolded polyQ protein. We previously reported that the direct interaction between expanded CAG RNA and nucleolar protein nucleolin (NCL) impedes preribosomal RNA (pre-rRNA) transcription, and eventually triggers nucleolar stress-induced apoptosis in polyQ diseases. Here, we report that a 21-amino acid peptide, named "beta-structured inhibitor for neurodegenerative diseases" (BIND), effectively suppresses toxicity induced by expanded CAG RNA. When administered to a cell model, BIND potently inhibited cell death induced by expanded CAG RNA with an IC50 value of ∼0.7 µM. We showed that the function of BIND is dependent on Glu2, Lys13, Gly14, Ile18, Glu19, and Phe20. BIND treatment restored the subcellular localization of nucleolar marker protein and the expression level of pre-45s rRNA Through isothermal titration calorimetry analysis, we demonstrated that BIND suppresses nucleolar stress via a direct interaction with CAG RNA in a length-dependent manner. The mean binding constants (KD) of BIND to SCA2CAG22 , SCA2CAG42 , SCA2CAG55 , and SCA2CAG72 RNA are 17.28, 5.60, 4.83, and 0.66 µM, respectively. In vivo, BIND ameliorates retinal degeneration and climbing defects, and extends the lifespan of Drosophila expressing expanded CAG RNA. These effects suggested that BIND can suppress neurodegeneration in diverse polyQ disease models in vivo and in vitro without exerting observable cytotoxic effect. Our results collectively demonstrated that BIND is an effective inhibitor of expanded CAG RNA-induced toxicity in polyQ diseases.


Asunto(s)
Enfermedad de Huntington/terapia , Péptidos/farmacología , Deficiencias en la Proteostasis/genética , Ataxias Espinocerebelosas/terapia , Repeticiones de Trinucleótidos/genética , Animales , Muerte Celular/efectos de los fármacos , Drosophila/genética , Células HEK293 , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Péptidos/metabolismo , Fosfoproteínas/genética , Pliegue de Proteína , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/terapia , ARN Ribosómico/genética , Proteínas de Unión al ARN/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Transcripción Genética/genética , Repeticiones de Trinucleótidos/efectos de los fármacos , Nucleolina
9.
FASEB J ; 33(11): 12019-12035, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373844

RESUMEN

Amyloid-ß (Aß) is derived from the proteolytic processing of amyloid precursor protein (APP), and the deposition of extracellular Aß to form amyloid plaques is a pathologic hallmark of Alzheimer's disease (AD). Although reducing Aß generation and accumulation has been proposed as a means of treating the disease, adverse side effects and unsatisfactory efficacy have been reported in several clinical trials that sought to lower Aß levels. Engulfment adaptor phosphotyrosine-binding (PTB) domain containing 1 (GULP1) is a molecular adaptor that has been shown to interact with APP to alter Aß production. Therefore, the modulation of the GULP1-APP interaction may be an alternative approach to reducing Aß. However, the mechanisms that regulate GULP1-APP binding remain elusive. As GULP1 is a phosphoprotein, and because phosphorylation is a common mechanism that regulates protein interaction, we anticipated that GULP1 phosphorylation would influence GULP1-APP interaction and thereby Aß production. We show here that the phosphorylation of GULP1 threonine 35 (T35) reduces GULP1-APP interaction and suppresses the stimulatory effect of GULP1 on APP processing. The residue is phosphorylated by an isoform of atypical PKC (PKCζ). Overexpression of PKCζ reduces both GULP1-APP interaction and GULP1-mediated Aß generation. Moreover, the activation of PKCζ via insulin suppresses APP processing. In contrast, GULP1-mediated APP processing is enhanced in PKCζ knockout cells. Similarly, PKC ι, another member of atypical PKC, also decreases GULP1-mediated APP processing. Intriguingly, our X-ray crystal structure of GULP1 PTB-APP intracellular domain (AICD) peptide reveals that GULP1 T35 is not located at the GULP1-AICD binding interface; rather, it immediately precedes the ß1-α2 loop that forms a portion of the binding groove for the APP helix αC. Phosphorylating the residue may induce an allosteric effect on the conformation of the binding groove. Our results indicate that GULP1 T35 phosphorylation is a mechanism for the regulation of GULP1-APP interaction and thereby APP processing. Moreover, the activation of atypical PKC, such as by insulin, may confer a beneficial effect on AD by lowering GULP1-mediated Aß production.-Chau, D. D.-L., Yung, K. W.-Y., Chan, W. W.-L., An, Y., Hao, Y., Chan, H.-Y. E., Ngo, J. C.-K., Lau, K.-F. Attenuation of amyloid-ß generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Treonina/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Cricetulus , Células HEK293 , Humanos , Fosforilación , Unión Proteica
10.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30026307

RESUMEN

Planar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of Fuz, a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous Fuz expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients. The disruption of this upregulation mitigates polyQ-induced neurodegeneration in Drosophila We show that the transcriptional regulator Yin Yang 1 (YY1) associates with the Fuz promoter. Overexpression of YY1 promotes the hypermethylation of Fuz promoter, causing transcriptional repression of Fuz Remarkably, YY1 protein is recruited to ATXN3-Q84 aggregates, which reduces the level of functional, soluble YY1, resulting in Fuz transcriptional derepression and induction of neuronal apoptosis. Furthermore, Fuz transcript level is elevated in amyloid beta-peptide, Tau and α-synuclein models, implicating its potential involvement in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Taken together, this study unveils a generic Fuz-mediated apoptotic cell death pathway in neurodegenerative disorders.


Asunto(s)
Apoptosis , Polaridad Celular/genética , Polaridad Celular/fisiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Adulto , Anciano , Péptidos beta-Amiloides/metabolismo , Animales , Caspasa 3/metabolismo , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Proteínas Dishevelled/metabolismo , Drosophila , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , MAP Quinasa Quinasa 4/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Enfermedades Neurodegenerativas/inducido químicamente , Péptidos/farmacología , Ratas , Factor de Transcripción YY1/genética , alfa-Sinucleína/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas tau/metabolismo
11.
J Neurosci ; 38(37): 8071-8086, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209205

RESUMEN

The octomeric exocyst complex governs the final step of exocytosis in both plants and animals. Its roles, however, extend beyond exocytosis and include organelle biogenesis, ciliogenesis, cell migration, and cell growth. Exo70 is a conserved component of the exocyst whose function in Drosophila is unclear. In this study, we characterized two mutant alleles of Drosophila exo70. exo70 mutants exhibit reduced synaptic growth, locomotor activity, glutamate receptor density, and mEPSP amplitude. We found that presynaptic Exo70 is necessary for normal synaptic growth at the neuromuscular junction (NMJ). At the neuromuscular junction, exo70 genetically interacts with the small GTPase ralA to regulate synaptic growth. Loss of Exo70 leads to the blockage of JNK signaling-, activity-, and temperature-induced synaptic outgrowths. We showed that this phenotype is associated with an impairment of integral membrane protein transport to the cell surface at synaptic terminals. In octopaminergic motor neurons, Exo70 is detected in synaptic varicosities, as well as the regions of membrane extensions in response to activity stimulation. Strikingly, mild thermal stress causes severe neurite outgrowth defects and pharate adult lethality in exo70 mutants. exo70 mutants also display defective locomotor activity in response to starvation stress. These results demonstrated that Exo70 is an important regulator of induced synaptic growth and is crucial for an organism's adaptation to environmental changes.SIGNIFICANCE STATEMENT The exocyst complex is a conserved protein complex directing secretory vesicles to the site of membrane fusion during exocytosis, which is essential for transporting proteins and membranes to the cell surface. Exo70 is a subunit of the exocyst complex whose roles in neurons remain elusive, and its function in Drosophila is unclear. In Drosophila, Exo70 is expressed in both glutamatergic and octopaminergic neurons, and presynaptic Exo70 regulates synaptic outgrowth. Moreover, exo70 mutants have impaired integral membrane transport to the cell surface at synaptic terminals and block several kinds of induced synaptic growth. Remarkably, elevated temperature causes severe arborization defects and lethality in exo70 mutants, thus underpinning the importance of Exo70 functions in development and adaptation to the environment.


Asunto(s)
Supervivencia Celular/genética , Proteínas de Drosophila/metabolismo , Exocitosis/fisiología , Calor , Proyección Neuronal/genética , Estrés Fisiológico/genética , Proteínas de Transporte Vesicular/metabolismo , Animales , Animales Modificados Genéticamente , Membrana Celular/metabolismo , Drosophila , Proteínas de Drosophila/genética , Neuritas/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Neuronas/metabolismo , Proteínas de Transporte Vesicular/genética
12.
J Biol Chem ; 293(20): 7674-7688, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29615491

RESUMEN

Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 guanine nucleotide exchange factor (GEF), interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances, whereas knockdown of FE65 or ELMO1 inhibits, neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane, where Rac1 is activated. We also show that FE65, ELMO1, and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism by which FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Proyección Neuronal/fisiología , Neuronas/citología , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular , Células Cultivadas , Humanos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Ratas , Proteína de Unión al GTP rac1/genética
13.
J Neurochem ; 149(6): 781-798, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30685895

RESUMEN

Polyglutamine (polyQ) diseases describe a group of progressive neurodegenerative disorders caused by the CAG triplet repeat expansion in the coding region of the disease genes. To date, nine such diseases, including spinocerebellar ataxia type 3 (SCA3), have been reported. The formation of SDS-insoluble protein aggregates in neurons causes cellular dysfunctions, such as impairment of the ubiquitin-proteasome system, and contributes to polyQ pathologies. Recently, the E3 ubiquitin ligases, which govern substrate specificity of the ubiquitin-proteasome system, have been implicated in polyQ pathogenesis. The Cullin (Cul) proteins are major components of Cullin-RING ubiquitin ligases (CRLs) complexes that are evolutionarily conserved in the Drosophila genome. In this study, we examined the effect of individual Culs on SCA3 pathogenesis and found that the knockdown of Cul1 expression enhances SCA3-induced neurodegeneration and reduces the solubility of expanded SCA3-polyQ proteins. The F-box proteins are substrate receptors of Cul1-based CRL. We further performed a genetic modifier screen of the 19 Drosophila F-box genes and identified F-box involved in polyQ pathogenesis (FipoQ) as a genetic modifier of SCA3 degeneration that modulates the ubiquitination and solubility of expanded SCA3-polyQ proteins. In the human SK-N-MC cell model, we identified that F-box only protein 33 (FBXO33) exerts similar functions as FipoQ in modulating the ubiquitination and solubility of expanded SCA3-polyQ proteins. Taken together, our study demonstrates that Cul1-based CRL and its associated F-box protein, FipoQ/FBXO33, modify SCA3 protein toxicity. These findings will lead to a better understanding of the disease mechanism of SCA3 and provide insights for developing treatments against SCA3. Cover Image for this issue: doi: 10.1111/jnc.14510.


Asunto(s)
Ataxina-3/metabolismo , Proteínas Cullin/metabolismo , Proteínas F-Box/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Línea Celular Tumoral , Drosophila , Proteínas de Drosophila/metabolismo , Humanos , Enfermedad de Machado-Joseph/metabolismo , Péptidos/metabolismo , Péptidos/toxicidad , Solubilidad , Ubiquitinación
14.
J Biol Chem ; 292(14): 5784-5800, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28246169

RESUMEN

Polyalanine (poly(A)) diseases are caused by the expansion of translated GCN triplet nucleotide sequences encoding poly(A) tracts in proteins. To date, nine human disorders have been found to be associated with poly(A) tract expansions, including congenital central hypoventilation syndrome and oculopharyngeal muscular dystrophy. Previous studies have demonstrated that unexpanded wild-type poly(A)-containing proteins localize to the cell nucleus, whereas expanded poly(A)-containing proteins primarily localize to the cytoplasm. Because most of these poly(A) disease proteins are transcription factors, this mislocalization causes cellular transcriptional dysregulation leading to cellular dysfunction. Correcting this faulty localization could potentially point to strategies to treat the aforementioned disorders, so there is a pressing need to identify the mechanisms underlying the mislocalization of expanded poly(A) protein. Here, we performed a glutathione S-transferase pulldown assay followed by mass spectrometry and identified eukaryotic translation elongation factor 1 α1 (eEF1A1) as an interacting partner with expanded poly(A)-containing proteins. Strikingly, knockdown of eEF1A1 expression partially corrected the mislocalization of the expanded poly(A) proteins in the cytoplasm and restored their functions in the nucleus. We further demonstrated that the expanded poly(A) domain itself can serve as a nuclear export signal. Taken together, this study demonstrates that eEF1A1 regulates the subcellular location of expanded poly(A) proteins and is therefore a potential therapeutic target for combating the pathogenesis of poly(A) diseases.


Asunto(s)
Señales de Exportación Nuclear , Factor 1 de Elongación Peptídica/metabolismo , Péptidos/metabolismo , Expansión de Repetición de Trinucleótido , Células HEK293 , Humanos , Hipoventilación/congénito , Hipoventilación/genética , Hipoventilación/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Factor 1 de Elongación Peptídica/genética , Transporte de Proteínas/genética , Apnea Central del Sueño/genética , Apnea Central del Sueño/metabolismo
15.
Mol Pharm ; 15(12): 5781-5792, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30392378

RESUMEN

Polyglutamine diseases are a set of progressive neurodegenerative disorders caused by misfolding and aggregation of mutant CAG RNA and polyglutamin protein. To date, there is a lack of effective therapeutics that can counteract the polyglutamine neurotoxicity. Two peptidylic inhibitors, QBP1 and P3, targeting the protein and RNA toxicities, respectively, have been previously demonstrated by us with combinational therapeutic effects on the Drosophila polyglutamine disease model. However, their therapeutic efficacy has never been investigated in vivo in mammals. The current study aims to (a) develop a brain-targeting delivery system for both QBP1 and L1P3V8 (a lipidated variant of P3 with improved stability) and (b) evaluate their therapeutic effects on the R6/2 transgenic mouse model of polyglutamine disease. Compared with intravenous administration, intranasal administration of QBP1 significantly increased its brain-to-plasma ratio. In addition, employment of a chitosan-containing in situ gel for the intranasal administration of QBP1 notably improved its brain concentration for up to 10-fold. Further study on intranasal cotreatment with the optimized formulation of QBP1 and L1P3V8 in mice found no interference on the brain uptake of each other. Subsequent efficacy evaluation of 4-week daily QBP1 (16 µmol/kg) and L1P3V8 (6 µmol/kg) intranasal cotreatment in the R6/2 mice demonstrated a significant improvement on the motor coordination and explorative behavior of the disease mice, together with a full suppression on the RNA- and protein-toxicity markers in their brains. In summary, the current study developed an efficient intranasal cotreatment of the two peptidylic inhibitors, QBP1 and L1P3V8, for their brain-targeting, and such a novel therapeutic strategy was found to be effective on a transgenic polyglutamine disease mouse model.


Asunto(s)
Proteínas Portadoras/administración & dosificación , Trastornos Heredodegenerativos del Sistema Nervioso/tratamiento farmacológico , Oligopéptidos/administración & dosificación , Péptidos/administración & dosificación , Péptidos/metabolismo , ARN Mensajero/antagonistas & inhibidores , Administración Intranasal , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Proteínas Portadoras/farmacocinética , Modelos Animales de Enfermedad , Esquema de Medicación , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada/métodos , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligopéptidos/farmacocinética , Péptidos/farmacocinética , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Expansión de Repetición de Trinucleótido/genética
16.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29237851

RESUMEN

Arthropods comprise the majority of all described animal species, and understanding their evolution is a central question in biology. Their developmental processes are under the precise control of distinct hormonal regulators, including the sesquiterpenoids juvenile hormone (JH) and methyl farnesoate. The control of the synthesis and mode of action of these hormones played important roles in the evolution of arthropods and their adaptation to diverse habitats. However, the precise roles of non-coding RNAs, such as microRNAs (miRNAs), controlling arthropod hormonal pathways are unknown. Here, we investigated the miRNA regulation of the expression of the juvenile hormone acid methyltransferase gene (JHAMT), which encodes a rate-determining sesquiterpenoid biosynthetic enzyme. Loss of function of the miRNA bantam in the fly Drosophila melanogaster increased JHAMT expression, while overexpression of the bantam repressed JHAMT expression and resulted in pupal lethality. The male genital organs of the pupae were malformed, and exogenous sesquiterpenoid application partially rescued the genital deformities. The role of the bantam in the regulation of sesquiterpenoid biosynthesis was validated by transcriptomic, qPCR and hormone titre (JHB3 and JH III) analyses. In addition, we found a conserved set of miRNAs that interacted with JHAMT, and the sesquiterpenoid receptor methoprene-tolerant (Met) in different arthropod lineages, including insects (fly, mosquito and beetle), crustaceans (water flea and shrimp), myriapod (centipede) and chelicerate (horseshoe crab). This suggests that these miRNAs might have conserved roles in the post-transcriptional regulation of genes in sesquiterpenoid pathways across the Panarthropoda. Some of the identified lineage-specific miRNAs are potential targets for the development of new strategies in aquaculture and agricultural pest control.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Metiltransferasas/genética , Transducción de Señal/genética , Animales , Artrópodos/genética , Artrópodos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Metiltransferasas/metabolismo , MicroARNs
17.
Small ; 12(37): 5178-5189, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27442290

RESUMEN

Biomedical applications of non-spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR. Next, gold nanoparticles are functionalized with DNA oligonucleotides to target Class A scavenger receptors expressed by C166 cells. Intriguingly, cellular uptake is maximized at a particular AR: shorter nanorods (AR = 2) enter C166 cells more than nanospheres (AR = 1) and longer nanorods (AR = 4 or 7). Strikingly, long targeted nanorods align to the cell membrane in a near-parallel manner followed by rotating by ≈90° to enter the cell via a caveolae-mediated pathway. Upon cellular entry, targeted nanorods of all ARs predominantly traffic to the late endosome without progressing to the lysosome. The studies yield important materials design rules for drug delivery carriers based on targeted, anisotropic nanoparticles.


Asunto(s)
Endocitosis , Células Endoteliales/citología , Células Endoteliales/metabolismo , Oro/química , Nanotubos/química , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , ADN/metabolismo , Endocitosis/efectos de los fármacos , Células Endoteliales/ultraestructura , Ratones , Modelos Biológicos , Nanotubos/toxicidad , Nanotubos/ultraestructura , Polietilenglicoles/química
18.
Biochem J ; 470(3): 303-17, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26188042

RESUMEN

Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-ß peptide (Aß) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser(610) and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser(610) phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser(610) phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser(610) by SGK1 regulates binding of FE65 to APP, APP turnover and processing.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/genética , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química
19.
Biochim Biophys Acta ; 1842(6): 779-84, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24269666

RESUMEN

The nucleolus is a subnuclear compartment within the cell nucleus that serves as the site for ribosomal RNA (rRNA) transcription and the assembly of ribosome subunits. Apart from its classical role in ribosomal biogenesis, a number of cellular regulatory roles have recently been assigned to the nucleolus, including governing the induction of apoptosis. "Nucleolar stress" is a term that is used to describe a signaling pathway through which the nucleolus communicates with other subcellular compartments, including the mitochondria, to induce apoptosis. It is an effective mechanism for eliminating cells that are incapable of performing protein synthesis efficiently due to ribosome biogenesis defects. The down-regulation of rRNA transcription is a common cause of nucleolar function disruption that subsequently triggers nucleolar stress, and has been associated with the pathogenesis of neurological disorders such as spinocerebellar ataxias (SCAs) and Huntington's diseases (HD). This article discusses recent advances in mechanistic studies of how expanded CAG trinucleotide repeat RNA transcripts trigger nucleolar stress in SCAs, HD and other trinucleotide repeat disorders. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.


Asunto(s)
Nucléolo Celular/genética , Enfermedad de Huntington/genética , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patología , Fibroblastos/metabolismo , Humanos , Enfermedad de Huntington/patología , Biosíntesis de Proteínas/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ataxias Espinocerebelosas/patología , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
FASEB J ; 28(1): 337-49, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24056087

RESUMEN

FE65 is an adaptor protein that binds to the amyloid precursor protein (APP). As such, FE65 has been implicated in the pathogenesis of Alzheimer's disease. In addition, evidence suggests that FE65 is involved in brain development. It is generally believed that FE65 participates in these processes by recruiting various interacting partners to form functional complexes. Here, we show that via its first phosphotyrosine binding (PTB) domain, FE65 binds to the small GTPase ADP-ribosylation factor 6 (ARF6). FE65 preferentially binds to ARF6-GDP, and they colocalize in neuronal growth cones. Interestingly, FE65 stimulates the activation of both ARF6 and its downstream GTPase Rac1, a regulator of actin dynamics, and functions in growth cones to stimulate neurite outgrowth. We show that transfection of FE65 and/or ARF6 promotes whereas small interfering RNA knockdown of FE65 or ARF6 inhibits neurite outgrowth in cultured neurons as compared to the mock-transfected control cells. Moreover, knockdown of ARF6 attenuates FE65 stimulation of neurite outgrowth and defective neurite outgrowth seen in FE65-deficient neurons is partially corrected by ARF6 overexpression. Notably, the stimulatory effect of FE65 and ARF6 on neurite outgrowth is abrogated either by dominant-negative Rac1 or knockdown of Rac1. Thus, we identify FE65 as a novel regulator of neurite outgrowth via controlling ARF6-Rac1 signaling.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Proteínas Nucleares/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Células CHO , Células Cultivadas , Cricetulus , Inmunoprecipitación , Unión Proteica , Ratas , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA