Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 45(1): 185-97, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27438771

RESUMEN

Group 3 innate lymphoid cells (ILC3s) expressing the transcription factor (TF) RORγt are important for the defense and homeostasis of host intestinal tissues. The zinc finger TF Ikaros, encoded by Ikzf1, is essential for the development of RORγt(+) fetal lymphoid tissue inducer (LTi) cells and lymphoid organogenesis, but its role in postnatal ILC3s is unknown. Here, we show that small-intestinal ILC3s had lower Ikaros expression than ILC precursors and other ILC subsets. Ikaros inhibited ILC3s in a cell-intrinsic manner through zinc-finger-dependent inhibition of transcriptional activity of the aryl hydrocarbon receptor, a key regulator of ILC3 maintenance and function. Ablation of Ikzf1 in RORγt(+) ILC3s resulted in increased expansion and cytokine production of intestinal ILC3s and protection against infection and colitis. Therefore, in contrast to being required for LTi development, Ikaros inhibits postnatal ILC3 development and function to regulate gut immune responses at steady state and in disease.


Asunto(s)
Colitis/inmunología , Factor de Transcripción Ikaros/metabolismo , Mucosa Intestinal/inmunología , Linfocitos/fisiología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Colitis/inducido químicamente , Sulfato de Dextran , Homeostasis , Factor de Transcripción Ikaros/genética , Inmunidad Innata , Mucosa Intestinal/microbiología , Activación de Linfocitos , Linfocitos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , Activación Transcripcional
2.
Biochem Biophys Res Commun ; 694: 149399, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38134477

RESUMEN

Ikaros family proteins (Ikaros, Helios, Aiolos, Eos) are zinc finger transcription factors essential for the development and function of the adaptive immune system. They also control developmental events in neurons and other cell types, suggesting that they possess crucial functions across disparate cell types. These functions are likely shared among the organisms in which these factors exist, and it is thus important to obtain a view of their distribution and conservation across organisms. How this family evolved remains poorly understood. Here we mined protein, mRNA and DNA databases to identify proteins with DNA-binding domains homologous to that of Ikaros. We show that Ikaros-related proteins exist in organisms from all four deuterostome phyla (chordates, echinoderms, hemichordates, xenacoelomorpha), but not in more distant groups. While most non-vertebrates have a single family member, this family grew to six members in the acoel worm Hofstenia miamia, three in jawless and four in jawed vertebrates. Most residues involved in DNA contact from zinc fingers 2 to 4 were identical across the Ikaros family, suggesting conserved mechanisms for target sequence recognition. Further, we identified a novel KRKxxxPxK/R motif that inhibits DNA binding in vitro which was conserved across the deuterostome phyla. We also identified a EψψxxxψM(D/E)QAIxxAIxYLGA(D/E)xL motif conserved among human Ikaros, Aiolos, Helios and subsets of chordate proteins, and motifs that are specific to subsets of vertebrate family members. Some of these motifs are targets of mutations in human patients. Finally we show that the atypical family member Pegasus emerged only in vertebrates, which is consistent with its function in bone. Our data provide a novel evolutionary perspective for Ikaros family proteins and suggest that they have conserved regulatory functions across deuterostomes.


Asunto(s)
Factor de Transcripción Ikaros , Dedos de Zinc , Animales , Humanos , ADN , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , ARN Mensajero , Dedos de Zinc/genética
3.
Nat Immunol ; 13(10): 972-80, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22961053

RESUMEN

The transcription factor Foxp3 participates dominantly in the specification and function of Foxp3(+)CD4(+) regulatory T cells (T(reg) cells) but is neither strictly necessary nor sufficient to determine the characteristic T(reg) cell signature. Here we used computational network inference and experimental testing to assess the contribution of other transcription factors to this. Enforced expression of Helios or Xbp1 elicited distinct signatures, but Eos, IRF4, Satb1, Lef1 and GATA-1 elicited exactly the same outcome, acting in synergy with Foxp3 to activate expression of most of the T(reg) cell signature, including key transcription factors, and enhancing occupancy by Foxp3 at its genomic targets. Conversely, the T(reg) cell signature was robust after inactivation of any single cofactor. A redundant genetic switch thus 'locked in' the T(reg) cell phenotype, a model that would account for several aspects of T(reg) cell physiology, differentiation and stability.


Asunto(s)
Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Antígenos CD4/biosíntesis , Diferenciación Celular , Biología Computacional , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Factores de Transcripción Forkhead/genética , Factor de Transcripción GATA1/genética , Humanos , Factor de Transcripción Ikaros/biosíntesis , Factor de Transcripción Ikaros/genética , Factores Reguladores del Interferón/genética , Activación de Linfocitos , Factor de Unión 1 al Potenciador Linfoide/genética , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción del Factor Regulador X , Serina Endopeptidasas/genética , Linfocitos T Reguladores/citología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Proteína 1 de Unión a la X-Box
4.
Ann Allergy Asthma Immunol ; 133(2): 133-143, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38253125

RESUMEN

The fact that genetic and environmental factors could trigger disruption of the epithelial barrier and subsequently initiate a TH2 inflammatory cascade conversely proposes that protecting the same barrier and promoting adequate interactions with other organs, such as the gut, may be crucial for lowering the risk and preventing atopic diseases, particularly, food allergies. In this review, we provide an overview of structural characteristics that support the epithelial barrier hypothesis in patients with atopic dermatitis, including the most relevant filaggrin gene mutations, the recent discovery of the role of the transient receptor potential vanilloid 1, and the role involvement of the microbiome in healthy and damaged skin. We present experimental and human studies that support the mechanisms of allergen penetration, particularly the dual allergen exposure and the outside-in, inside-out, and outside-inside-outside hypotheses. We discuss classic skin-targeted therapies for food allergy prevention, including moisturizers, steroids, and topical calcineurin inhibitors, along with pioneering trials proposed to change their current use (Prevention of Allergy via Cutaneous Intervention and Stopping Eczema and ALlergy). We provide an overview of the novel therapies that enhance the skin barrier, such as probiotics and prebiotics topical application, read-through drugs, direct and indirect FLG replacement, and interleukin and janus kinases inhibitors. Last, we discuss the newer strategies for preventing and treating food allergies in the form of epicutaneous immunotherapy and the experimental use of single-dose of adeno-associated virus vector gene immunotherapy.


Asunto(s)
Dermatitis Atópica , Proteínas Filagrina , Piel , Humanos , Piel/inmunología , Piel/patología , Piel/efectos de los fármacos , Dermatitis Atópica/prevención & control , Dermatitis Atópica/inmunología , Dermatitis Atópica/terapia , Hipersensibilidad a los Alimentos/prevención & control , Hipersensibilidad a los Alimentos/inmunología , Animales , Probióticos/uso terapéutico , Alérgenos/inmunología
5.
Cell ; 138(2): 300-13, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19632180

RESUMEN

While hematopoietic stem cell (HSC) self-renewal is well studied, it remains unknown whether distinct control mechanisms enable HSC divisions that generate progeny cells with specific lineage bias. Here, we report that the monocytic transcription factor MafB specifically restricts the ability of M-CSF to instruct myeloid commitment divisions in HSCs. MafB deficiency specifically enhanced sensitivity to M-CSF and caused activation of the myeloid master-regulator PU.1 in HSCs in vivo. Single-cell analysis revealed that reduced MafB levels enabled M-CSF to instruct divisions producing asymmetric daughter pairs with one PU.1(+) cell. As a consequence, MafB(-/-) HSCs showed a PU.1 and M-CSF receptor-dependent competitive repopulation advantage specifically in the myelomonocytic, but not T lymphoid or erythroid, compartment. Lineage-biased repopulation advantage was progressive, maintained long term, and serially transplantable. Together, this indicates that an integrated transcription factor/cytokine circuit can control the rate of specific HSC commitment divisions without compromising other lineages or self-renewal.


Asunto(s)
Linaje de la Célula , Células Madre Hematopoyéticas/citología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Factor de Transcripción MafB/metabolismo , Células Mieloides/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Transactivadores/metabolismo
6.
Adv Exp Med Biol ; 1459: 33-52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017838

RESUMEN

The IKAROS family of transcription factors comprises four zinc-finger proteins (IKAROS, HELIOS, AIOLOS, and EOS), which over the last decades have been established to be critical regulators of the development and function of lymphoid cells. These factors act as homo- or heterodimers and are involved both in gene activation and repression. Their function often involves cross-talk with other regulatory circuits, such as the JAK/STAT, NF-κB, and NOTCH pathways. They control lymphocyte differentiation at multiple stages and are notably critical for lymphoid commitment in multipotent hematopoietic progenitors and for T and B cell differentiation downstream of pre-TCR and pre-BCR signaling. They also control many aspects of effector functions in mature B and T cells. They are dysregulated or mutated in multiple pathologies affecting the lymphoid system, which range from leukemia to immunodeficiencies. In this chapter, we review the molecular and physiological function of these factors in lymphocytes and their implications in human pathologies.


Asunto(s)
Diferenciación Celular , Factor de Transcripción Ikaros , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Animales , Transducción de Señal , Linfocitos/metabolismo , Linfocitos/inmunología
7.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33893236

RESUMEN

The production of proinflammatory cytokines, particularly granulocyte-macrophage colony-stimulating factor (GM-CSF), by pathogenic CD4+ T cells is central for mediating tissue injury in inflammatory and autoimmune diseases. However, the factors regulating the T cell pathogenic gene expression program remain unclear. Here, we investigated how the Ikaros transcription factor regulates the global gene expression and chromatin accessibility changes in murine T cells during Th17 polarization and after activation via the T cell receptor (TCR) and CD28. We found that, in both conditions, Ikaros represses the expression of genes from the pathogenic signature, particularly Csf2, which encodes GM-CSF. We show that, in TCR/CD28-activated T cells, Ikaros binds a critical enhancer downstream of Csf2 and is required to regulate chromatin accessibility at multiple regions across this locus. Genome-wide Ikaros binding is associated with more compact chromatin, notably at multiple sites containing NFκB or STAT5 target motifs, and STAT5 or NFκB inhibition prevents GM-CSF production in Ikaros-deficient cells. Importantly, Ikaros also limits GM-CSF production in TCR/CD28-activated human T cells. Our data therefore highlight a critical conserved transcriptional mechanism that antagonizes GM-CSF expression in T cells.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor de Transcripción Ikaros/metabolismo , Activación de Linfocitos , Diferenciación Celular , Células Cultivadas , Epigenoma , Regulación de la Expresión Génica , Humanos
8.
Biochem Biophys Res Commun ; 674: 83-89, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37413709

RESUMEN

The transcriptional regulators that drive regulatory T (Treg) cell development and function remain partially understood. Helios (Ikzf2) and Eos (Ikzf4) are closely-related members of the Ikaros family of transcription factors. They are highly expressed in CD4+ Treg cells and functionally important for Treg cell biology, as mice deficient for either Helios or Eos are susceptible to autoimmune diseases. However, it remains unknown if these factors exhibit specific or partially redundant functions in Treg cells. Here we show that mice with germline deletions of both Ikzf2 and Ikzf4 are not very different from animals with single Ikzf2 or Ikzf4 deletions. Double knockout Treg cells differentiate normally, and efficiently suppress effector T cell proliferation in vitro. Both Helios and Eos are required for optimal Foxp3 protein expression. Surprisingly, Helios and Eos regulate different, largely non-overlapping, sets of genes. Only Helios is required for proper Treg cell aging, as Helios deficiency results in reduced Treg cell frequencies in the spleen of older animals. These results indicate that Helios and Eos are required for distinct aspects of Treg cell function.


Asunto(s)
Factor de Transcripción Ikaros , Linfocitos T Reguladores , Animales , Ratones , Enfermedades Autoinmunes/genética , Susceptibilidad a Enfermedades/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Factores de Transcripción/metabolismo
9.
J Immunol ; 207(2): 421-435, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34233909

RESUMEN

Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.


Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Proteínas de la Membrana/inmunología , Animales , Endosomas/inmunología , Femenino , Genes MHC Clase II/inmunología , Aparato de Golgi/inmunología , Inmunidad Innata/inmunología , Mucosa Intestinal/inmunología , Canales Iónicos/inmunología , Linfocitos/inmunología , Lisosomas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th17/inmunología , Tretinoina/inmunología
10.
Allergy ; 77(2): 416-441, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34255344

RESUMEN

Food allergy (FA) is now one of the most common chronic diseases of childhood often lasting throughout life and leading to significant worldwide healthcare burden. The precise mechanisms responsible for the development of this inflammatory condition are largely unknown; however, a multifactorial aetiology involving both environmental and genetic contributions is well accepted. A precise understanding of the pathogenesis of FA is an essential first step to developing comprehensive prevention strategies that could mitigate this epidemic. As it is frequently preceded by atopic dermatitis and can be prevented by early antigen introduction, the development of FA is likely facilitated by the improper initial presentation of antigen to the developing immune system. Primary oral exposure of antigens allowing for presentation via a well-developed mucosal immune system, rather than through a disrupted skin epidermal barrier, is essential to prevent FA. In this review, we present the data supporting the necessity of (1) an intact epidermal barrier to prevent epicutaneous antigen presentation, (2) the presence of specific commensal bacteria to maintain an intact mucosal immune system and (3) maternal/infant diet diversity, including vitamins and minerals, and appropriately timed allergenic food introduction to prevent FA.


Asunto(s)
Dermatitis Atópica , Hipersensibilidad a los Alimentos , Dermatitis Atópica/etiología , Dermatitis Atópica/prevención & control , Humanos , Lactante , Membrana Mucosa
11.
J Allergy Clin Immunol ; 148(6): 1347-1364, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34872649

RESUMEN

The prevalence of food allergy (FA) is increasing in some areas of the globe, highlighting the need for better strategies for prevention, diagnosis, and therapy. In the last few decades, we have made great strides in understanding the causes and mechanisms underlying FAs, prompting guideline updates. Earlier guidelines recommended avoidance of common food allergens during pregnancy and lactation and delaying the introduction of allergenic foods in children aged between 1 and 3 years. Recent guidelines for allergy prevention recommend consumption of a healthy and diverse diet without eliminating or increasing the consumption of allergenic foods during pregnancy or breast-feeding. Early introduction of allergenic foods is recommended by most guidelines for allergy prevention after a period of exclusive breast-feedng (6 months [World Health Organization] or 4 months [European Academy of Allergy and Clinical Immunology]). New diagnostics for FA have been developed with varied availability of these tests in different countries. Finally, the first oral immunotherapy drug for FA was approved by the US Food and Drug Administration and European Medicines Agency in 2020. In this review, we will address the global prevalence of FA, our current understanding of the causes of FA, and the latest guidelines for preventing, diagnosing, and treating FA. We will also discuss similarities and differences between FA guidelines.


Asunto(s)
Desensibilización Inmunológica/métodos , Hipersensibilidad a los Alimentos/epidemiología , Alérgenos/inmunología , Animales , Lactancia Materna , Preescolar , Dietoterapia , Femenino , Alimentos , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/terapia , Humanos , Lactante , Guías de Práctica Clínica como Asunto , Embarazo , Prevalencia
12.
Allergy ; 76(1): 71-89, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32189356

RESUMEN

Biologicals have transformed the management of severe disease phenotypes in asthma, atopic dermatitis, and chronic spontaneous urticaria. As a result, the number of approved biologicals for the treatment of atopic diseases is continuously increasing. Although atopic diseases are among the most common diseases in the reproductive age, investigations, and information on half-life, pharmacokinetics defining the neonatal Fc receptors (FcRn) and most important safety of biologicals in pregnancy are lacking. Given the complex sequence of immunological events that regulate conception, fetal development, and the intrauterine and postnatal maturation of the immune system, this information is of utmost importance. We conducted a systematic review on biologicals in pregnancy for indications of atopic diseases. Evidence in this field is scarce and mainly reserved to reports on the usage of omalizumab. This lack of evidence demands the establishment of a multidisciplinary approach for the management of pregnant women who receive biologicals and multicenter registries for long-term follow-up, drug trial designs suitable for women in the reproductive age, and better experimental models that represent the human situation. Due to the very long half-life of biologicals, preconception counseling and healthcare provider education are crucial to offer the best care for mother and fetus. This position paper integrates available data on safety of biologicals during pregnancy in atopic diseases via a systematic review with a detailed review on immunological considerations how inhibition of different pathways may impact pregnancy.


Asunto(s)
Asma , Productos Biológicos , Dermatitis Atópica , Asma/tratamiento farmacológico , Asma/epidemiología , Factores Biológicos , Productos Biológicos/uso terapéutico , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/epidemiología , Femenino , Humanos , Recién Nacido , Estudios Multicéntricos como Asunto , Omalizumab , Embarazo
13.
PLoS Genet ; 14(7): e1007485, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30001316

RESUMEN

Plasmacytoid and conventional dendritic cells (pDCs and cDCs) arise from monocyte and dendritic progenitors (MDPs) and common dendritic progenitors (CDPs) through gene expression changes that remain partially understood. Here we show that the Ikaros transcription factor is required for DC development at multiple stages. Ikaros cooperates with Notch pathway activation to maintain the homeostasis of MDPs and CDPs. Ikaros then antagonizes TGFß function to promote pDC differentiation from CDPs. Strikingly, Ikaros-deficient CDPs and pDCs express a cDC-like transcriptional signature that is correlated with TGFß activation, suggesting that Ikaros is an upstream negative regulator of the TGFß pathway and a repressor of cDC-lineage genes in pDCs. Almost all of these phenotypes can be rescued by short-term in vitro treatment with γ-secretase inhibitors, which affects both TGFß-dependent and -independent pathways, but is Notch-independent. We conclude that Ikaros is a crucial differentiation factor in early dendritic progenitors that is required for pDC identity.


Asunto(s)
Diferenciación Celular/genética , Células Dendríticas/fisiología , Factor de Transcripción Ikaros/metabolismo , Receptores Notch/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Trasplante de Médula Ósea , Línea Celular , Regulación hacia Abajo , Células Madre Hematopoyéticas/fisiología , Factor de Transcripción Ikaros/genética , Ratones , Ratones Transgénicos , Monocitos/fisiología , Mutación , Transducción de Señal/genética , Regulación hacia Arriba
14.
Development ; 144(8): 1566-1577, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28289129

RESUMEN

Here, we unravel the mechanism of action of the Ikaros family zinc finger protein Helios (He) during the development of striatal medium spiny neurons (MSNs). He regulates the second wave of striatal neurogenesis involved in the generation of striatopallidal neurons, which express dopamine 2 receptor and enkephalin. To exert this effect, He is expressed in neural progenitor cells (NPCs) keeping them in the G1/G0 phase of the cell cycle. Thus, a lack of He results in an increase of S-phase entry and S-phase length of NPCs, which in turn impairs striatal neurogenesis and produces an accumulation of the number of cycling NPCs in the germinal zone (GZ), which end up dying at postnatal stages. Therefore, He-/- mice show a reduction in the number of dorso-medial striatal MSNs in the adult that produces deficits in motor skills acquisition. In addition, overexpression of He in NPCs induces misexpression of DARPP-32 when transplanted in mouse striatum. These findings demonstrate that He is involved in the correct development of a subset of striatopallidal MSNs and reveal new cellular mechanisms for neuronal development.


Asunto(s)
Cuerpo Estriado/citología , Proteínas de Unión al ADN/metabolismo , Globo Pálido/citología , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Recuento de Células , Puntos de Control del Ciclo Celular , Muerte Celular , Proliferación Celular , Ciclina E/metabolismo , Fase G1 , Ratones Noqueados , Actividad Motora , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Fenotipo , Fase S
15.
Allergy ; 75(9): 2185-2205, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32249942

RESUMEN

There is increasing evidence regarding the importance of allergic sensitization through the skin. In this review, we provide an overview of the atopic march and immune mechanism underlying the sensitization and effector phase of food allergy. We present experimental models and human data that support the concept of epicutaneous sensitization and how this forms one half of the dual-allergen exposure hypothesis. We discuss specific important elements in the skin (FLG and other skin barrier gene mutations, Langerhans cells, type 2 innate lymphoid cells, IL-33, TSLP) that have important roles in the development of allergic responses as well as the body of evidence on environmental allergen exposure and how this can sensitize an individual. Given the link between skin barrier impairment, atopic dermatitis, food allergy, allergic asthma, and allergic rhinitis, it is logical that restoring the skin barrier and prevention or treating atopic dermatitis would have beneficial effects on prevention of related allergic diseases, particularly food allergy. We present the experimental and human studies that have evaluated this approach and discuss various factors which may influence the success of these approaches, such as the type of emollient chosen for the intervention, the role of managing skin inflammation, and differences between primary and secondary prevention of atopic dermatitis to achieve the desired outcome.


Asunto(s)
Dermatitis Atópica , Hipersensibilidad a los Alimentos , Alérgenos , Dermatitis Atópica/etiología , Dermatitis Atópica/prevención & control , Proteínas Filagrina , Hipersensibilidad a los Alimentos/prevención & control , Humanos , Inmunidad Innata , Linfocitos
16.
Allergy ; 75(11): 2764-2774, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32500526

RESUMEN

The outbreak of the SARS-CoV-2-induced coronavirus disease 2019 (COVID-19) pandemic re-shaped doctor-patient interaction and challenged capacities of healthcare systems. It created many issues around the optimal and safest way to treat complex patients with severe allergic disease. A significant number of the patients are on treatment with biologicals, and clinicians face the challenge to provide optimal care during the pandemic. Uncertainty of the potential risks for these patients is related to the fact that the exact sequence of immunological events during SARS-CoV-2 is not known. Severe COVID-19 patients may experience a "cytokine storm" and associated organ damage characterized by an exaggerated release of pro-inflammatory type 1 and type 3 cytokines. These inflammatory responses are potentially counteracted by anti-inflammatory cytokines and type 2 responses. This expert-based EAACI statement aims to provide guidance on the application of biologicals targeting type 2 inflammation in patients with allergic disease. Currently, there is very little evidence for an enhanced risk of patients with allergic diseases to develop severe COVID-19. Studies focusing on severe allergic phenotypes are lacking. At present, noninfected patients on biologicals for the treatment of asthma, atopic dermatitis, chronic rhinosinusitis with nasal polyps, or chronic spontaneous urticaria should continue their biologicals targeting type 2 inflammation via self-application. In case of an active SARS-CoV-2 infection, biological treatment needs to be stopped until clinical recovery and SARS-CoV-2 negativity is established and treatment with biologicals should be re-initiated. Maintenance of add-on therapy and a constant assessment of disease control, apart from acute management, are demanded.


Asunto(s)
Productos Biológicos/inmunología , Productos Biológicos/uso terapéutico , COVID-19/complicaciones , COVID-19/inmunología , Hipersensibilidad/tratamiento farmacológico , Hipersensibilidad/inmunología , Academias e Institutos , Europa (Continente) , Humanos , Hipersensibilidad/complicaciones , Pandemias
17.
BMC Med Res Methodol ; 20(1): 70, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32293286

RESUMEN

BACKGROUND: It is important to estimate the treatment effect of interest accurately and precisely within the analysis of randomised controlled trials. One way to increase precision in the estimate and thus improve the power for randomised trials with continuous outcomes is through adjustment for pre-specified prognostic baseline covariates. Typically covariate adjustment is conducted using regression analysis, however recently, Inverse Probability of Treatment Weighting (IPTW) using the propensity score has been proposed as an alternative method. For a continuous outcome it has been shown that the IPTW estimator has the same large sample statistical properties as that obtained via analysis of covariance. However the performance of IPTW has not been explored for smaller population trials (< 100 participants), where precise estimation of the treatment effect has potential for greater impact than in larger samples. METHODS: In this paper we explore the performance of the baseline adjusted treatment effect estimated using IPTW in smaller population trial settings. To do so we present a simulation study including a number of different trial scenarios with sample sizes ranging from 40 to 200 and adjustment for up to 6 covariates. We also re-analyse a paediatric eczema trial that includes 60 children. RESULTS: In the simulation study the performance of the IPTW variance estimator was sub-optimal with smaller sample sizes. The coverage of 95% CI's was marginally below 95% for sample sizes < 150 and ≥ 100. For sample sizes < 100 the coverage of 95% CI's was always significantly below 95% for all covariate settings. The minimum coverage obtained with IPTW was 89% with n = 40. In comparison, regression adjustment always resulted in 95% coverage. The analysis of the eczema trial confirmed discrepancies between the IPTW and regression estimators in a real life small population setting. CONCLUSIONS: The IPTW variance estimator does not perform so well with small samples. Thus we caution against the use of IPTW in small sample settings when the sample size is less than 150 and particularly when sample size < 100.


Asunto(s)
Puntaje de Propensión , Niño , Simulación por Computador , Humanos , Método de Montecarlo , Probabilidad , Ensayos Clínicos Controlados Aleatorios como Asunto , Análisis de Regresión , Tamaño de la Muestra
18.
Eur J Immunol ; 48(5): 861-873, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29315532

RESUMEN

Basophils have been recently recognized to play important roles in type 2 immune responses during allergies and parasitic infection, largely due to the development of novel tools for the in vivo study of these cells. As such, the genetically-engineered MCPT8DTR mouse line has been used to specifically deplete basophils following treatment with diphtheria toxin (DT). In this study, we showed that DT-injected MCPT8DTR mice exhibited a striking decrease of eosinophils and neutrophils in skin when subjected to a hapten fluorescein isothiocyanate (FITC)-induced allergic contact dermatitis (ACD) experimental protocol. Unexpectedly, we found that loss of skin eosinophils and neutrophils was not due to a lack of basophil-mediated recruitment, as DT injection caused a systemic reduction of eosinophils and neutrophils in MCPT8DTR mice in a time-dependent manner. Furthermore, we found that hematopoietic stem-cell-derived granulocyte-macrophage progenitors (GMPs) expressed MCPT8 gene, and that these cells were depleted upon DT injection. Finally, we optimized a protocol in which a low-dose DT achieved a better specificity for depleting basophils, but not GMPs, in MCPT8DTR mice, and demonstrate that basophils do not play a major role in recruiting eosinophils and neutrophils to ACD skin. These data provide new and valuable information about functional studies of basophils.


Asunto(s)
Basófilos/inmunología , Dermatitis Alérgica por Contacto/inmunología , Toxina Diftérica/toxicidad , Eosinófilos/inmunología , Células Progenitoras de Granulocitos y Macrófagos/citología , Neutrófilos/inmunología , Triptasas/metabolismo , Animales , Basófilos/citología , Eosinófilos/citología , Femenino , Células Progenitoras de Granulocitos y Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Neutrófilos/citología , Triptasas/genética
20.
J Biol Chem ; 291(17): 9073-86, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26841869

RESUMEN

B1 B cells secrete most of the circulating natural antibodies and are considered key effector cells of the innate immune response. However, B1 cell-associated antibodies often cross-react with self-antigens, which leads to autoimmunity, and B1 cells have been implicated in cancer. How B1 cell activity is regulated remains unclear. We show that the Ikaros transcription factor is a major negative regulator of B1 cell development and function. Using conditional knock-out mouse models to delete Ikaros at different locations, we show that Ikaros-deficient mice exhibit specific and significant increases in splenic and bone marrow B1 cell numbers, and that the B1 progenitor cell pool is increased ∼10-fold in the bone marrow. Ikaros-null B1 cells resemble WT B1 cells at the molecular and cellular levels, but show a down-regulation of signaling components important for inhibiting proliferation and immunoglobulin production. Ikaros-null B1 cells hyper-react to TLR4 stimulation and secrete high amounts of IgM autoantibodies. These results indicate that Ikaros is required to limit B1 cell homeostasis in the adult.


Asunto(s)
Autoanticuerpos/inmunología , Subgrupos de Linfocitos B/inmunología , Células de la Médula Ósea/inmunología , Factor de Transcripción Ikaros/inmunología , Inmunoglobulina M/inmunología , Células Precursoras de Linfocitos B/inmunología , Animales , Factor de Transcripción Ikaros/genética , Ratones , Ratones Noqueados , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA