Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 95(35): 13338-13345, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37585740

RESUMEN

Haematococcus pluvialis is a good source of astaxanthin, which reduces oxidation in the human body, treats inflammation, and slows the growth of breast and skin cancer cells. Since the size of H. pluvialis is often closely related to astaxanthin yield, size-based microalgal separation has far-reaching significance for high-value algae extraction and algal directed evolution. In this work, we report a novel size-tunable elasto-inertial sorting of H. pluvialis in the Ecoflex ultrastretchable microfluidic devices. Ecoflex microfluidic chips can deform and be flexible, bringing flexibility and stretchability to microchannels as well as new possibilities for large-scale modulation of channel geometry. Here, the effects of velocity, channel elongation, and particle size on the elasto-inertial migration of particles are systematically studied. We found that channel elongation has a strong regulating effect on particle focusing. In addition, we verified the continuous regulation of the sorting threshold of microalgal cells by stretching the channel, providing technical support for the extraction and directed evolution of high-yield microalgae.


Asunto(s)
Chlorophyceae , Microalgas , Humanos , Xantófilas
2.
Electrophoresis ; 43(20): 1993-2004, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35766887

RESUMEN

A numerical model was developed and validated to investigate the fluid-structure interactions between fully developed pipe flow and core-shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core-shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.


Asunto(s)
Microfluídica , Cápsulas , Estrés Mecánico
3.
Nanotechnology ; 32(42)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34243177

RESUMEN

In this paper, we employ Poisson-Nernst-Planck equations in conjunction with the Navier-Stokes equations and the mean-field theory to investigate the charge transport of double species monovalent ions in double-layered graphene sheets, driven by an external electric field. Unlike most classical models, we develop a simple mechanical model by incorporating the microscopic effects of the physical systems so that the ionic interactions between ions and the host material, and the steric repulsions among ions are considered. Taking Li+-PF6-1monovalent ions as an example, we find that the transport pattern for the present double species ionic systems and that for the pure lithium ions are dramatically different. Due to the mutual attractive ionic forces between ions and their counter-ions, such double species systems turn out to be more stable than that of the single species systems. In addition, the storage patterns of the former systems are richer, which depend heavily on initial ionic states, however less on the strength of applied electric fields and external temperatures when the graphene separation is not too large. The fluid flows, the electric conductivities and the stability of such double species systems are subsequently scrutinized. The current study could form a theoretical basis to help designing high-performance lithium batteries and explaining ion transport in biological channels.

4.
Electrophoresis ; 41(10-11): 891-901, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31998972

RESUMEN

Scale-up in droplet microfluidics achieved by increasing the number of devices running in parallel or increasing the droplet makers in the same device can compromise the narrow droplet-size distribution, or requires high fabrication cost, when glass- or polymer-based microdevices are used. This paper reports a novel way using parallelization of needle-based microfluidic systems to form highly monodispersed droplets with enhanced production rates yet in cost-effective way, even when forming higher order emulsions with complex inner structure. Parallelization of multiple needle-based devices could be realized by applying commercially available two-way connecters and 3D-printed four-way connectors. The production rates of droplets could be enhanced around fourfold (over 660 droplets/min) to eightfold (over 1300 droplets/min) by two-way connecters and four-way connectors, respectively, for the production of the same kind of droplets than a single droplet maker (160 droplets/min). Additionally, parallelization of four-needle sets with each needle specification ranging from 34G to 20G allows for simultaneous generation of four groups of PDMS microdroplets with each group having distinct size yet high monodispersity (CV < 3%). Up to six cores can be encapsulated in double emulsion using two parallelly connected devices via tuning the capillary number of middle phase in a range of 1.31 × 10-4 to 4.64 × 10-4 . This study leads to enhanced production yields of droplets and enables the formation of groups of droplets simultaneously to meet extensive needs of biomedical and environmental applications, such as microcapsules with variable dosages for drug delivery or drug screening, or microcapsules with wide range of absorbent loadings for water treatment.


Asunto(s)
Microfluídica/instrumentación , Microfluídica/métodos , Dimetilpolisiloxanos/química , Emulsiones/química , Diseño de Equipo , Agujas , Nylons/química , Tamaño de la Partícula
5.
Entropy (Basel) ; 22(9)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-33286720

RESUMEN

In this paper, we propose an adaptive entropy model (AEM), which incorporates the entropy measurement and the adaptability into the conventional Markowitz's mean-variance model (MVM). We evaluate the performance of AEM, based on several portfolio performance indicators using the five-year Shanghai Stock Exchange 50 (SSE50) index constituent stocks data set. Our outcomes show, compared with the traditional portfolio selection model, that AEM tends to make our investments more decentralized and hence helps to neutralize unsystematic risks. Due to the existence of self-adaptation, AEM turns out to be more adaptable to market fluctuations and helps to maintain the balance between the decentralized and concentrated investments in order to meet investors' expectations. Our model applies equally well to portfolio optimizations for other financial markets.

6.
Langmuir ; 35(24): 8031-8037, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31120252

RESUMEN

Using trimesic acid (TMA) as a model system by means of scanning tunneling microscope (STM) equipped with a temperature controller, here, we report a temperature-assisted method to cooperatively control electric-field-induced supramolecular phase transitions at the liquid/solid interface. Octanoic acid is used as a solvent due to its good solubility for TMA and its less complicated pattern formed under negative STM bias (e.g., only chicken-wire polymorphs existing). At positive substrate bias, STM revealed that TMA assembly based on temperature modulations underwent phase transitions from a porous (22 °C) to a flower (45 °C) and further to a zigzag (68 °C) structure. The transitions are ascribed to the partial deprotonation of the carboxyl groups of TMA. Both the temperature and electrical polarity of the substrate are crucial, i.e., the transitions only take place at positive substrate bias and elevated temperatures. Molecular mechanics simulations were carried out to calculate the temperature and electric field dependence of the adsorption enthalpy and free energy of the chicken-wire assembly of TMA on the two layers of graphene surface. The calculated decrease in adsorption enthalpy with the increase of temperature and electric field values that causes the TMA chicken-wire assembly to be less stable is proposed to promote the occurrence of the phase transition observed by STM. This study paves the way toward program-controlled supramolecular phase switching via the synergic effect of electrical and thermal stimuli.

7.
Nanoscale ; 15(5): 1981-2002, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36515142

RESUMEN

Supramolecular self-assemblies formed by various non-covalent interactions can produce diverse functional networks on solid surfaces. These networks have recently attracted much interest from both fundamental and application points of view. Unlike covalent organic frameworks (COFs), the properties of the assemblies differ from each other depending on the constituent motifs. These various motifs may find diverse applications such as in crystal engineering, surface modification, and molecular electronics. Significantly, these interactions between/among the molecular tectonics are relatively weak and reversible, which makes them responsive to external stimuli. Moreover, for a liquid-solid-interface environment, the dynamic processes are amenable to in situ observation using scanning tunneling microscopy (STM). In the literature, most review articles focus on supramolecular self-assembly interactions. This review summarizes the recent literature in which stimulation sources, including chemical, physical, and their combined stimuli, cooperatively tailor supramolecular assemblies on surfaces. The appropriate design and synthesis of functional molecules that can be integrated on different surfaces permits the use of nanostructured materials and devices for bottom-up nanotechnology. Finally, we discuss synergic effect on materials science.

8.
Small Methods ; 6(6): e2101599, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460206

RESUMEN

Recently, exploring the unique properties of 2D materials has constituted a new wave of research, which lead these materials to enormous applications ranging from optoelectronics to healthcare systems. Due to the profusion of surface terminated functionalities, MXenes have become an emerging class of 2D materials that can be easily integrated with other materials. The versatility of MXenes allows to tune their finest material properties for further device applications. This review initiates with the classification of preparation methods of MXenes, where the authors elaborate on the significance of top-down approaches including the exfoliation of solid layers. Next, the focus is diverted toward the materials analysis of MXenes including their terminations analysis as well as their intriguing electrical and mechanical behaviors through scanning probe microscopy. Finally, critical challenges and perspectives for MXenes analysis and applications are explored and discussed. Therefore, this comprehensive review can encourage researchers, and offer a precise direction to employ MXenes in various applications.


Asunto(s)
Microscopía de Sonda de Barrido
9.
Nanotechnology ; 22(30): 305403, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21719967

RESUMEN

In this paper, we use applied mathematical modelling to investigate the storage of hydrogen molecules inside graphene-oxide frameworks, which comprise two parallel graphenes rigidly separated by perpendicular ligands. Hydrogen uptake is calculated for graphene-oxide frameworks using the continuous approximation and an equation of state for both the bulk and adsorption gas phases. We first validate our approach by obtaining results for two parallel graphene sheets. This result agrees well with an existing theoretical result, namely 1.85 wt% from our calculations, and 2 wt% arising from an ab initio and grand canonical Monte Carlo calculation. This provides confidence to the determination of the hydrogen uptake for the four graphene-oxide frameworks, GOF-120, GOF-66, GOF-28 and GOF-6, and we obtain 1.68, 2, 6.33 and 0 wt%, respectively. The high value obtained for GOF-28 may be partly explained by the fact that the benzenediboronic acid pillars between graphene sheets not only provide mechanical support and porous spaces for the molecular structure but also provide the higher binding energy to enhance the hydrogen storage inside graphene-oxide frameworks. For the other three structures, this binding energy is not as large in comparison to that of GOF-28 and this effect diminishes as the ligand density decreases. In the absence of conflicting data, the present work indicates GOF-28 as a likely contender for practical hydrogen storage.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(4): 1119-21, 2011 Apr.
Artículo en Zh | MEDLINE | ID: mdl-21714273

RESUMEN

Green tea, a traditional healthy drink, has various necessary nutrients. A study was carried out on the contents of mineral elements such as Ni, Ba, Fe, Mn, Cr, Mg, Ca, Cu and Al in two grades of three green tea varieties by ICP-AES. The difference in contents of mineral elements between green teas was studied. The results indicated that there are different contents of mineral elements among varieties and grades of green tea. A basis for consumption, varieties identification and grades judgment was provided by the study.


Asunto(s)
Minerales/análisis , Espectrofotometría Atómica , Té/química
11.
J Theor Biol ; 262(3): 498-504, 2010 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-19835889

RESUMEN

Stiff polymers, such as single-stranded DNA, unstructured RNA and cellulose, are all basically extremely long rods with relatively short repeating monomers. The simplest model for describing such stiff polymers is called the freely jointed chain model, which treats a molecule as a chain of perfectly rigid subunits of orientationally independent statistical segments, joined together by perfectly flexible hinges. A more realistic model that incorporates the entropic elasticity of a molecule, called the worm-like chain model, has been proposed by assuming that each monomer resists the bending force. Some force-extension formulae for the worm-like chain model have been previously found in terms of interpolation and numerical solutions resulting from statistical mechanics. In this paper, however, we adopt a variational principle to seek the minimum energy configuration of a stretched molecule by incorporating all the possible orientations of each monomer under thermal equilibrium, i.e., constant temperature. We determine a force-extension formula for the worm-like chain model analytically. We find that our formula suggests new terms such as the free energy and the cut-off force of a molecule, which define a clear transition from the entropic regime to the enthalpic regime and the fracture of the molecule, respectively. In addition, we predict two possible phase changes for a stretched molecule, i.e., from a super-helix to a soliton and then from a soliton to a vertical twisted line. We show theoretically that a molecule must undergo at least one phase change before it is fully stretched into its total contour length. This new formula is used to fit recent experimental data and shows a good agreement with some current literature that uses a statistical approach. Finally, an instability analysis is adopted to investigate the sensitivity of the new formula subject to small changes in temperature.


Asunto(s)
Modelos Moleculares , Fenómenos Biomecánicos , Conformación Molecular , Temperatura
12.
Sensors (Basel) ; 10(12): 11556-65, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22163542

RESUMEN

Wearable motion sensors consisting of accelerometers, gyroscopes and magnetic sensors are readily available nowadays. The small size and low production costs of motion sensors make them a very good tool for human motions analysis. However, data processing and accuracy of the collected data are important issues for research purposes. In this paper, we aim to review the literature related to usage of inertial sensors in human lower limb biomechanics studies. A systematic search was done in the following search engines: ISI Web of Knowledge, Medline, SportDiscus and IEEE Xplore. Thirty nine full papers and conference abstracts with related topics were included in this review. The type of sensor involved, data collection methods, study design, validation methods and its applications were reviewed.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Extremidad Inferior/fisiología , Monitoreo Ambulatorio/instrumentación , Movimiento (Física) , Algoritmos , Técnicas Biosensibles/clasificación , Técnicas Biosensibles/instrumentación , Humanos , Monitoreo Ambulatorio/métodos , Proyectos de Investigación , Caminata/fisiología
13.
Nanoscale ; 12(30): 15970-15992, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32761037

RESUMEN

Currently, sustainable renewable energy sources are urgently required to fulfill the cumulative energy needs of the world's 7.8 billion population, since the conventional coal and fossil fuels will be exhausted soon. Photovoltaic devices are a direct and efficient means to produce a huge amount of energy to meet these energy targets. In particular, hybrid-perovskite-based photovoltaic devices merit special attention not only due to their exceptional efficiency for generating appreciable energy but also their tunable band gaps and the ease of device fabrication. However, the commercialization of such devices suffers from the instability of the compositional materials. The cause of instability is the perovskite's structure and its morphology at the sub-molecular level; thereby revealing and eliminating these instabilities are a striking challenge. To address this issue, scanning tunneling microscopy/spectroscopy (STM/STS) presents a comprehensive method to allow the visualization of the morphology and electronic structure of materials at atomic-level resolution. Here, we review the recent developments of perovskite-based solar cells (PSCs), the STM/STS analysis of photoactive halide/hybrid and oxide materials, and the real-time STM/STS investigation of electronic structures with defects and traps that are believed to mainly affect device performances. The detailed STM/STS analysis can facilitate a better understanding of the properties of materials at the nanoscale. This informative study may hold great promise to advance the development of stable PSCs under atmospheric conditions.

14.
RSC Adv ; 10(16): 9210-9225, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35497220

RESUMEN

The highly efficient treatment of azo dye contaminated wastewater from the textile industry is an important but challenging problem. Herein, polydimethylsiloxane (PDMS) microparticles, incorporating multiple-walled carbon nanotubes/titanium dioxide (MWCNTs/TiO2) nanocomposites, were successfully synthesized to treat wastewater containing Rhodamine B (RhB) dyes in a synergetic approach, by combining sorption and photocatalytic degradation. The surfactant wrapping sol-gel method was applied to synthesize MWCNTs/TiO2 nanocomposites with TiO2 nanoparticles evenly distributed on the surface of the MWCNTs. The PDMS microparticles were fabricated with an oil-in-water (O/W) single emulsion template, using needle-based microfluidic devices. MWCNTs/TiO2 nanocomposites (at a weight ratio of 1%, and 2%, respectively) were mixed with the PDMS precursor as the dispersed phase, and an aqueous solution of polyvinyl alcohol (PVA) was used as the continuous phase. Highly monodispersed microparticles, with average diameters of 692.7 µm (Coefficient of Variation, CV = 0.74%) and 678.3 µm (CV = 1.04%), were formed at an applied flow rate of the dispersed and continuous phase of 30 and 200 µL min-1, respectively. The fabricated hybrid microparticles were employed for the treatment of RhB, involving a dark equilibrium for 5 hours and UV irradiation for 3 hours. The experimental conditions of applied PDMS type, mass loading amount, treatment duration, photodegradation kinetics, initial concentration of pollutants and environmental pH values were investigated in this work. The PDMS microparticles with 2 wt% MWCNTs/TiO2 nanocomposites can exhibit a removal efficiency of 85%. Remarkably, an efficiency of 70% can be retained after the microparticles have been recycled and reused for 3 cycles. The PDMS-MWCNTs/TiO2 microparticles possess a superior performance over conventional treatment approaches for dye contaminated wastewater, especially in recyclability and the prevention of secondary pollution. This work provides a feasible and eco-friendly route for developing an efficient and low-cost microfluidic method for treating complicated water environmental systems.

15.
Eur Biophys J ; 38(4): 487-93, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19132359

RESUMEN

In this paper, we model the mechanics of a collagen pair in the connective tissue extracellular matrix that exists in abundance throughout animals, including the human body. This connective tissue comprises repeated units of two main structures, namely collagens as well as axial, parallel and regular anionic glycosaminoglycan between collagens. The collagen fibril can be modeled by Hooke's law whereas anionic glycosaminoglycan behaves more like a rubber-band rod and as such can be better modeled by the worm-like chain model. While both computer simulations and continuum mechanics models have been investigated for the behavior of this connective tissue typically, authors either assume a simple form of the molecular potential energy or entirely ignore the microscopic structure of the connective tissue. Here, we apply basic physical methodologies and simple applied mathematical modeling techniques to describe the collagen pair quantitatively. We found that the growth of fibrils was intimately related to the maximum length of the anionic glycosaminoglycan and the relative displacement of two adjacent fibrils, which in return was closely related to the effectiveness of anionic glycosaminoglycan in transmitting forces between fibrils. These reveal the importance of the anionic glycosaminoglycan in maintaining the structural shape of the connective tissue extracellular matrix and eventually the shape modulus of human tissues. We also found that some macroscopic properties, like the maximum molecular energy and the breaking fraction of the collagen, were also related to the microscopic characteristics of the anionic glycosaminoglycan.


Asunto(s)
Matriz Extracelular/química , Colágenos Fibrilares/química , Modelos Biológicos , Algoritmos , Simulación por Computador , Tejido Conectivo/química , Glicosaminoglicanos/química , Mecánica
16.
J Phys Condens Matter ; 31(26): 265901, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-30917355

RESUMEN

Lysozyme is an enzyme often used as an antibacterial agent in food industries and biochemical and pharmaceutical laboratories. Immobilisation of lysozyme by encapsulating in a nanotube has received much interest as it can enhance stability of the enzyme in ambient condition. Experimentally, various types of nanotubes have been proposed as a host for lysozyme. Here, we mathematically model the immobilisation process and the interaction between lysozyme and various types of nanotubes in order to compare the effectiveness of different nanotube materials. In this paper, we consider boron nitride, carbon, silicon, silicon carbide and titania nanotubes. For each type of nanotubes, we determine the critical radius that will maximise the interaction between the lysozyme molecule and the nanotube. Our results suggest that titania nanotube stands out as the most promising candidate for lysozyme storage and delivery. The model presented here can be extended to further investigate the interaction between different types of nanotube materials and protein structures for the development of effective molecular storage.


Asunto(s)
Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Nanotubos/química , Modelos Moleculares , Conformación Proteica , Termodinámica , Titanio/química
17.
Sci Rep ; 9(1): 11712, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406199

RESUMEN

We investigate the formation of thin ionic layers driven by electro-osmotic forces, that are commonly found in micro- and nano-channels. Recently, multi-layers have been reported in the literature. However, the relation between classical Debye layers and multi-layers, which is a practically and fundamentally important question, was previously unexplained. Here, we fill this gap by using a continuum approach to investigate the flow of lithium ions inside double-layered graphene sheets. Fluid flow, charge conductivity and thermal stability will be investigated. We show that the separation and strength of forces between the sheets, the external electric field and thermal effects determine the topology of the ionic layers between the graphene sheets.

18.
Sci Rep ; 9(1): 12121, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431670

RESUMEN

Here, water flow inside large radii semi-infinite carbon nanotubes is investigated. Permeable wall taking into account the molecular interactions between water and a nanotube, and the slip boundary condition will be considered. Furthermore, interactions among molecules are approximated by the continuum approximation. Incompressible and Newtonian fluid is assumed, and the Navier-Stokes equations, after certain assumptions, transformations and derivations, can be reduced into two first integral equations. In conjunction with the asymptotic expansion technique, we are able to derive the radial and axial velocities analytically, capturing the effect of the water leakage, where both mild and exceptionally large leakages will be considered. The radial velocity obeys the prescribed boundary condition at the (im)permeable wall. Through the mean of the radial forces, the sufficiently large leakages will enhance the radial velocity at the center of the tube. On the other hand, unlike the classical laminar flow, the axial velocity attains its maximum at the wall due to the coupling effect with the radial forces as water is being pushed into the proximity of the inner wall. In addition, the axial velocity and the flux with the consideration of the suck-in forces, induced by the tubes' entry turn out to be one order higher than that without the suck-in forces. All the aforementioned considerations might partially resolve the mysteriously high water penetration through nanotubes. Axial velocity also drops with the tube's length when the water leakage is permitted and the suck-in forces will ease the decline rate of the axial velocity. The present mathematical framework can be directly employed into the water flow inside other porous nano-materials, where large water leakage is permitted and therefore are of huge practical impact on ultra-filtration and environmental protection.

19.
J Biomech ; 41(11): 2562-6, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18617177

RESUMEN

This study presented a three-pressure-sensor (3PS) system for monitoring ankle supination torque during sport motions. Five male subjects wore a pair of cloth sport shoes and performed 10 trials of walking, running, cutting, vertical jump-landing and stepping-down motions in a random sequence. A pair of pressure insoles (Novel Pedar model W, Germany) was inserted in the shoes for the measurement of plantar pressure at 100Hz. The ankle joint torque was calculated by a standard lower extremity inverse dynamic calculation procedure with the data obtained by a motion capture system (VICON, UK) and a force plate (AMTI, USA), and was presented in a supination/pronation plane with an oblique axis of rotation at the ankle joint. Stepwise linear regression analysis suggested that pressure data at three locations beneath the foot were essential for reconstructing the ankle supination torque. Another group of five male subjects participated in a validation test with the same procedure, but with the pressure insoles replaced by the 3PS system. Estimated ankle supination torque was calculated from the equation developed by the regression analysis. Results suggested that the correlation between the standard and estimated data was high (R=0.938). The overall root mean square error was 6.91Nm, which was about 6% of the peak values recorded in the five sport motions (113Nm). With the good estimation accuracy, tiny size and inexpensive cost, the 3PS system is readily available to be implanted in sport shoe for the estimation and monitoring of ankle supination torque during dynamic sport motions.


Asunto(s)
Tobillo/fisiología , Simulación por Computador , Movimiento/fisiología , Deportes , Supinación/fisiología , Torque , Adulto , Humanos , Masculino , Presión , Zapatos
20.
J Biomech ; 41(11): 2571-4, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18617179

RESUMEN

This study presents a free-fall mechanical supination sprain simulator for evaluating the ankle joint kinematics during a simulated ankle supination sprain injury. The device allows the foot to be in an anatomical position before the sudden motion, and also allows different degrees of supination, or a combination of inversion and plantarflexion. Five subjects performed simulated supination sprain trials in five different supination angles. Ankle motion was captured by a motion analysis system, and the ankle kinematics were reported in plantarflexion/dorsiflexion, inversion/eversion and internal/external rotation planes. Results showed that all sprain motions were not pure single-plane motions but were accompanied by motion in other two planes, therefore, different degrees of supination were achieved. The presented sprain simulator allows a more comprehensive study of the kinematics of ankle sprain when compared with some previous laboratory research designs.


Asunto(s)
Articulación del Tobillo/fisiología , Esguinces y Distensiones/patología , Supinación/fisiología , Fenómenos Biomecánicos , Simulación por Computador , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA