Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(15): 155002, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095639

RESUMEN

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×10^{13} (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

2.
Phys Rev Lett ; 113(15): 155003, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375714

RESUMEN

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 µm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2).

3.
Phys Rev Lett ; 113(15): 155004, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375715

RESUMEN

Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

4.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862497

RESUMEN

Neutrons generated in Inertial Confinement Fusion (ICF) experiments provide valuable information to interpret the conditions reached in the plasma. The neutron time-of-flight (nToF) technique is well suited for measuring the neutron energy spectrum due to the short time (100 ps) over which neutrons are typically emitted in ICF experiments. By locating detectors 10s of meters from the source, the neutron energy spectrum can be measured to high precision. We present a contextual review of the current state of the art in nToF detectors at ICF facilities in the United States, outlining the physics that can be measured, the detector technologies currently deployed and analysis techniques used.

5.
Rev Sci Instrum ; 94(3): 031102, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012753

RESUMEN

The Z machine is a current driver producing up to 30 MA in 100 ns that utilizes a wide range of diagnostics to assess accelerator performance and target behavior conduct experiments that use the Z target as a source of radiation or high pressures. We review the existing suite of diagnostic systems, including their locations and primary configurations. The diagnostics are grouped in the following categories: pulsed power diagnostics, x-ray power and energy, x-ray spectroscopy, x-ray imaging (including backlighting, power flow, and velocimetry), and nuclear detectors (including neutron activation). We will also briefly summarize the primary imaging detectors we use at Z: image plates, x-ray and visible film, microchannel plates, and the ultrafast x-ray imager. The Z shot produces a harsh environment that interferes with diagnostic operation and data retrieval. We term these detrimental processes "threats" of which only partial quantifications and precise sources are known. We summarize the threats and describe techniques utilized in many of the systems to reduce noise and backgrounds.

6.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184347

RESUMEN

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

7.
Rev Sci Instrum ; 93(10): 103514, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319333

RESUMEN

In inertial confinement fusion experiments, the neutron yield is an important metric for thermonuclear fusion performance. Neutron activation diagnostics can be used to infer neutron yields. The material used for neutron activation diagnostic undergoes a threshold reaction so that only neutrons having energies above the threshold energy are observed. For thermonuclear experiments using deuterium (D) and tritium (T) fuel constituents, neutrons arising from D + D reactions (DD-neutrons) and neutrons resulting from D + T reactions (DT-neutrons) are of primary interest. Indium has two neutron activation reactions that can be used to infer yields of DD-neutrons and DT-neutrons. One threshold is high enough that only DT-neutrons can induce activation, the second reaction can be activated by both DD-neutrons and DT-neutrons. Thus, to obtain the DD-neutron yield, the contribution made by DT-neutrons to the total induced activity must be extracted. In DD-fuel experiments, DT-neutrons arise from secondary reactions, which are significantly lower in number than primary DD-neutrons, and their contribution to the inferred DD-neutron yield can be ignored. When the DD- and DT-neutron yields become comparable, such as when low tritium fractions are added to DD-fuel, the contribution of DT-neutrons must be extracted to obtain accurate yields. A general method is described for this correction to DD-neutron yields.

8.
Rev Sci Instrum ; 93(11): 113531, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461459

RESUMEN

Neutron time-of-flight (nTOF) detectors have been used on Sandia National Laboratories' Z-Machine for inertial confinement fusion and magnetized liner fusion experiments to infer physics parameters including the apparent fuel-ion temperature, neutron yield, the magnetic-radius product (BR), and the liner rho-r. Single-paddle, dual-paddle, and co-axial scintillation nTOF detectors are used in axial lines-of-sight (LOS) and LOS that are 12° from the midplane. Detector fabrication, characterization, and calibration are discussed.

9.
Rev Sci Instrum ; 89(10): 10K122, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399717

RESUMEN

This work illustrates predominant measureable nonlinearities in photomultiplier tubes (PMTs) and introduces a controllable one called "Superlinearity," signifying both a positive nonlinear response and the ability to extend linear operation by counteracting gain saturation mechanisms - charge depletion, space-charge field limitation, and secondary emission surface effects. Recognizing superlinearity and its effect on the temporal step response leads to a true definition of linearity, free of a small-signal linear assumption. Furthermore, given the prevalent use of glass microchannel-plate (MCP) PMTs in favor of a faster impulse response in spite of a small charge limit, we are motivated to examine their nonlinear amplitude response and deploy tailored gain bias string methods to fully harness the maximum linear gain as is usually done for transmissive metal mesh and reflective metal dynode PMTs. Our characterization methodology applies standard NIST-traceable calibrated laboratory equipment with absolute input-referenced techniques, examining step responses over many orders of magnitude in controlled illumination. By doing so, we quantitatively reveal the superlinearity strength independent of charge depletion, yielding true linear responsivity and effectively doubling the small-signal linear limit; this is very relevant to PMT modeling and charge deconvolution efforts. With further development, the tailoring strategies we introduce could be applied to MCP detectors, extracting all useful capillary charge with a significant improvement in large linear signal quality.

10.
Rev Sci Instrum ; 89(10): 10I119, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399763

RESUMEN

The apparent ion temperature and neutron-reaction history are important characteristics of a fusion plasma. Extracting these quantities from a measured neutron-time-of-flight signal requires accurate knowledge of the instrument response function (IRF). This work describes a novel method for obtaining the IRF directly for single DT neutron interactions by utilizing n-alpha coincidence. The t(d,α)n nuclear reaction was produced at Sandia National Laboratories' Ion Beam Laboratory using a 300 keV Cockcroft-Walton generator to accelerate a 2.5 µA beam of 175 keV D+ ions into a stationary ErT2 target. The average neutron IRF was calculated by taking a time-corrected average of individual neutron events within an EJ-228 plastic scintillator. The scintillator was coupled to two independent photo-multiplier tubes operated in the current mode: a Hamamatsu 5946 mod-5 and a Photek PMT240. The experimental setup and results will be discussed.

11.
Rev Sci Instrum ; 89(10): 10I121, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399775

RESUMEN

The one-dimensional imager of neutrons (ODIN) at the Sandia Z facility consists of a 10-cm block of tungsten with rolled edges, creating a slit imager with slit widths of either 250, 500, or 750 µm. Designed with a 1-m neutron imaging line of sight, we achieve about 4:1 magnification and 500-µm axial spatial resolution. The baseline inertial confinement fusion concept at Sandia is magnetized liner inertial fusion, which nominally creates a 1-cm line source of neutrons. ODIN was designed to determine the size, shape, and location of the neutron producing region, furthering the understanding of compression quality along the cylindrical axis of magnetized liner implosions. Challenges include discriminating neutrons from hard x-rays and gammas with adequate signal-to-noise in the 2 × 1012 deuterium-deuterium (DD) neutron yield range, as well as understanding the point spread function of the imager to various imaging detectors (namely, CR-39). Modeling efforts were conducted with MCNP6.1 to determine neutron response functions for varying configurations in a clean DD neutron environment (without x-rays or gammas). Configuration alterations that will be shown include rolled-edge slit orientation and slit width, affecting the resolution and response function. Finally, the experiment to determine CR-39 neutron sensitivity, with and without a high density polyethylene (n, p) converter, an edge spread function, and resolution will be discussed.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(2 Pt 2): 026404, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16196715

RESUMEN

We have developed wire-array z -pinch scaling relations for plasma-physics and inertial-confinement-fusion (ICF) experiments. The relations can be applied to the design of z -pinch accelerators for high-fusion-yield (approximately 0.4 GJ/shot) and inertial-fusion-energy (approximately 3 GJ/shot) research. We find that (delta(a)/delta(RT)) proportional (m/l)1/4 (Rgamma)(-1/2), where delta(a) is the imploding-sheath thickness of a wire-ablation-dominated pinch, delta(RT) is the sheath thickness of a Rayleigh-Taylor-dominated pinch, m is the total wire-array mass, l is the axial length of the array, R is the initial array radius, and gamma is a dimensionless functional of the shape of the current pulse that drives the pinch implosion. When the product Rgamma is held constant the sheath thickness is, at sufficiently large values of m/l, determined primarily by wire ablation. For an ablation-dominated pinch, we estimate that the peak radiated x-ray power P(r) proportional (I/tau(i))(3/2)Rlphigamma, where I is the peak pinch current, tau(i) is the pinch implosion time, and phi is a dimensionless functional of the current-pulse shape. This scaling relation is consistent with experiment when 13 MA < or = I < or = 20 MA, 93 ns < or = tau(i) < or = 169 ns, 10 mm < or = R < or = 20 mm, 10 mm < or = l < or = 20 mm, and 2.0 mg/cm < or = m/l < or = 7.3 mg/cm. Assuming an ablation-dominated pinch and that Rlphigamma is held constant, we find that the x-ray-power efficiency eta(x) congruent to P(r)/P(a) of a coupled pinch-accelerator system is proportional to (tau(i)P(r)(7/9 ))(-1), where P(a) is the peak accelerator power. The pinch current and accelerator power required to achieve a given value of P(r) are proportional to tau(i), and the requisite accelerator energy E(a) is proportional to tau2(i). These results suggest that the performance of an ablation-dominated pinch, and the efficiency of a coupled pinch-accelerator system, can be improved substantially by decreasing the implosion time tau(i). For an accelerator coupled to a double-pinch-driven hohlraum that drives the implosion of an ICF fuel capsule, we find that the accelerator power and energy required to achieve high-yield fusion scale as tau(i)0.36 and tau(i)1.36, respectively. Thus the accelerator requirements decrease as the implosion time is decreased. However, the x-ray-power and thermonuclear-yield efficiencies of such a coupled system increase with tau(i). We also find that increasing the anode-cathode gap of the pinch from 2 to 4 mm increases the requisite values of P(a) and E(a) by as much as a factor of 2.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(4 Pt 2): 046406, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15903793

RESUMEN

We present observations for 20-MA wire-array z pinches of an extended wire ablation period of 57%+/-3% of the stagnation time of the array and non-thin-shell implosion trajectories. These experiments were performed with 20-mm-diam wire arrays used for the double- z -pinch inertial confinement fusion experiments [M. E. Cuneo, Phys. Rev. Lett. 88, 215004 (2002)] on the Z accelerator [R. B. Spielman, Phys. Plasmas 5, 2105 (1998)]. This array has the smallest wire-wire gaps typically used at 20 MA (209 microm ). The extended ablation period for this array indicates that two-dimensional (r-z) thin-shell implosion models that implicitly assume wire ablation and wire-to-wire merger into a shell on a rapid time scale compared to wire acceleration are fundamentally incorrect or incomplete for high-wire-number, massive (>2 mg/cm) , single, tungsten wire arrays. In contrast to earlier work where the wire array accelerated from its initial position at approximately 80% of the stagnation time, our results show that very late acceleration is not a universal aspect of wire array implosions. We also varied the ablation period between 46%+/-2% and 71%+/-3% of the stagnation time, for the first time, by scaling the array diameter between 40 mm (at a wire-wire gap of 524 mum ) and 12 mm (at a wire-wire gap of 209 microm ), at a constant stagnation time of 100+/-6 ns . The deviation of the wire-array trajectory from that of a thin shell scales inversely with the ablation rate per unit mass: f(m) proportional[dm(ablate)/dt]/m(array). The convergence ratio of the effective position of the current at peak x-ray power is approximately 3.6+/-0.6:1 , much less than the > or = 10:1 typically inferred from x-ray pinhole camera measurements of the brightest emitting regions on axis, at peak x-ray power. The trailing mass at the array edge early in the implosion appears to produce wings on the pinch mass profile at stagnation that reduces the rate of compression of the pinch. The observation of precursor pinch formation, trailing mass, and trailing current indicates that all the mass and current do not assemble simultaneously on axis. Precursor and trailing implosions appear to impact the efficiency of the conversion of current (driver energy) to x rays. An instability with the character of an m = 0 sausage grows rapidly on axis at stagnation, during the rise time of pinch power. Just after peak power, a mild m = 1 kink instability of the pinch occurs which is correlated with the higher compression ratio of the pinch after peak power and the decrease of the power pulse. Understanding these three-dimensional, discrete-wire implosion characteristics is critical in order to efficiently scale wire arrays to higher currents and powers for fusion applications.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(4 Pt 2): 046416, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12443339

RESUMEN

Absorption spectroscopy measurements of the time-dependent heating of thin foils exposed to intense z-pinch radiation sources are presented. These measurements and their analysis provide valuable benchmarks for, and insights into, the radiative heating of matter by x-ray sources. Z-pinch radiation sources with peak powers of up to 160 TW radiatively heated thin plastic-tamped aluminum foils to temperatures approximately 60 eV. The foils were located in open slots at the boundary of z-pinch hohlraums surrounding the pinch. Time-resolved Kalpha satellite absorption spectroscopy was used to measure the evolution of the Al ionization distribution, using a geometry in which the pinch served as the backlighter. The time-dependent pinch radius and x-ray power were monitored using framing camera, x-ray diode array, and bolometer measurements. A three-dimensional view factor code, within which one-dimensional (1D) radiation-hydrodynamics calculations were performed for each surface element in the view factor grid, was used to compute the incident and reemitted radiation flux distribution throughout the hohlraum and across the foil surface. Simulated absorption spectra were then generated by postprocessing radiation-hydrodynamics results for the foil heating using a 1D collisional-radiative code. Our simulated results were found to be in good general agreement with experimental x-ray spectra, indicating that the spectral measurements are consistent with independent measurements of the pinch power. We also discuss the sensitivity of our results to the spectrum of the radiation field incident on the foil, and the role of nonlocal thermodynamic equilibrium atomic kinetics in affecting the spectra.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(4 Pt 2): 046403, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15169102

RESUMEN

We have measured the x-ray power and energy radiated by a tungsten-wire-array z pinch as a function of the peak pinch current and the width of the anode-cathode gap at the base of the pinch. The measurements were performed at 13- and 19-MA currents and 1-, 2-, 3-, and 4-mm gaps. The wire material, number of wires, wire-array diameter, wire-array length, wire-array-electrode design, normalized-pinch-current time history, implosion time, and diagnostic package were held constant for the experiments. To keep the implosion time constant, the mass of the array was increased as I2 (i.e., the diameter of each wire was increased as I), where I is the peak pinch current. At 19 MA, the mass of the 300-wire 20-mm-diam 10-mm-length array was 5.9 mg. For the configuration studied, we find that to eliminate the effects of gap closure on the radiated energy, the width of the gap must be increased approximately as I. For shots unaffected by gap closure, we find that the peak radiated x-ray power P(r) proportional to I1.24+/-0.18, the total radiated x-ray energy E(r) proportional to I1.73+/-0.18, the x-ray-power rise time tau(r) proportional to I0.39+/-0.34, and the x-ray-power pulse width tau(w) proportional to demonstrate that the internal energy and radiative opacity of the pinch are not responsible for the observed subquadratic power scaling. Heuristic wire-ablation arguments suggest that quadratic power scaling will be achieved if the implosion time tau(i) is scaled as I(-1/3). The measured 1sigma shot-to-shot fluctuations in P(r), E(r), tau(r), tau(w), and tau(i) are approximately 12%, 9%, 26%, 9%, and 2%, respectively, assuming that the fluctuations are independent of I. These variations are for one-half of the pinch. If the half observed radiates in a manner that is statistically independent of the other half, the variations are a factor of 2(1/2) less for the entire pinch. We calculate the effect that shot-to-shot fluctuations of a single pinch would have on the shot-success probability of the double-pinch inertial-confinement-fusion driver proposed by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. We find that on a given shot, the probability that two independent pinches would radiate the same peak power to within a factor of 1+/-alpha (where 0< or =alpha<<1) is equal to erf(alpha/2sigma), where sigma is the 1sigma fractional variation of the peak power radiated by a single pinch. Assuming alpha must be < or =7% to achieve adequate odd-Legendre-mode radiation symmetry for thermonuclear-fusion experiments, sigma must be <3% for the shot-success probability to be > or =90%. The observed (12/2(1/2))%=8.5% fluctuation in P(r) would provide adequate symmetry on 44% of the shots. We propose that three-dimensional radiative-magnetohydrodynamic simulations be performed to quantify the sensitivity of the x-ray emission to various initial conditions, and to determine whether an imploding z pinch is a spatiotemporal chaotic system.

16.
Rev Sci Instrum ; 85(11): 11E617, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430363

RESUMEN

A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.

17.
Rev Sci Instrum ; 85(4): 043507, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24784607

RESUMEN

We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

18.
Rev Sci Instrum ; 83(10): 10D914, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126917

RESUMEN

We have performed absolute calibrations of a fusion-neutron-yield copper-activation diagnostic in environments that significantly attenuate and scatter neutrons. We have measured attenuation and scattering effects and have compared the measurements to Monte Carlo simulations using the Monte Carlo N-Particle code. We find that measurements and simulations are consistent within 10%.

19.
Rev Sci Instrum ; 83(10): 10D915, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126918

RESUMEN

A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

20.
Rev Sci Instrum ; 83(10): 10D913, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126916

RESUMEN

The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the (63)Cu(n,2n)(62)Cu(ß+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 µm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)(4)He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced (62)Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA