Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 147: 253-261, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27986605

RESUMEN

Diffusion tensor imaging (DTI) is used extensively in neuroscience to noninvasively estimate white matter (WM) microarchitecture. However, the diffusion signal is inherently ambiguous because it infers WM structure from the orientation of water diffusion and cannot identify the biological sources of diffusion changes. To compare inferred WM estimates to directly labeled axonal elements, we performed a novel within-subjects combination of high-resolution ex vivo DTI with two-photon laser microscopy of intact mouse brains rendered optically transparent by Clear Lipid-exchanged, Anatomically Rigid, Imaging/immunostaining compatible, Tissue hYdrogel (CLARITY). We found that myelin basic protein (MBP) immunofluorescence significantly correlated with fractional anisotropy (FA), especially in WM regions with coherent fiber orientations and low fiber dispersion. Our results provide evidence that FA is particularly sensitive to myelination in WM regions with these characteristics. Furthermore, we found that radial diffusivity (RD) was only sensitive to myelination in a subset of WM tracts, suggesting that the association of RD with myelin should be used cautiously. This combined DTI-CLARITY approach illustrates, for the first time, a framework for using brain-wide immunolabeling of WM targets to elucidate the relationship between the diffusion signal and its biological underpinnings. This study also demonstrates the feasibility of a within-subject combination of noninvasive neuroimaging and tissue clearing techniques that has broader implications for neuroscience research.


Asunto(s)
Imagen de Difusión Tensora/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Vaina de Mielina , Sustancia Blanca/diagnóstico por imagen , Animales , Anisotropía , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Data Brief ; 10: 438-443, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28054004

RESUMEN

We provide datasets from combined ex vivo diffusion tensor imaging (DTI) and Clear Lipid-exchanged, Anatomically Rigid, Imaging/immunostaining compatible, Tissue hYdrogel (CLARITY) performed on intact mouse brains. DTI-derived measures of fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were compared to antibody-based labeling of myelin basic protein (MBP), as measured by fluorescence microscopy. We used a customized CLARITY hydrogel solution to facilitate whole brain tissue clearing and subsequent immunolabeling. We describe how CLARITY was made compatible with magnetic resonance imaging with the intention of facilitating future multimodal imaging studies that may combine noninvasive imaging with 3D immunohistochemistry. These data and methods are related to the accompanying research article entitled, 'The role of myelination in measures of white matter integrity: Combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact brains' (E.H. Chang, M. Argyelan, M. Aggarwal, T-S. Chandon, K.H. Karlsgodt, S. Mori, A.K. Malhotra, 2016) [1].

3.
Schizophr Res ; 168(1-2): 402-410, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26164821

RESUMEN

The zinc finger protein ZNF804A rs1344706 variant is a replicated genome-wide significant risk variant for schizophrenia and bipolar disorder. While its association with altered brain structure and cognition in patients and healthy risk allele carriers is well documented, the characteristics and function of the gene in the brain remains poorly understood. Here, we used in situ hybridization to determine mRNA expression levels of the ZNF804A rodent homologue, Zfp804a, across multiple postnatal neurodevelopmental time points in the rat brain. We found changes in Zfp804a expression in the rat hippocampus, frontal cortex, and thalamus across postnatal neurodevelopment. Zfp804a mRNA peaked at postnatal day (P) 21 in hippocampal CA1 and DG regions and was highest in the lower cortical layers of frontal cortex at P1, possibly highlighting a role in developmental migration. Using immunofluorescence, we found that Zfp804a mRNA and ZFP804A co-localized with neurons and not astrocytes. In primary cultured cortical neurons, we found that Zfp804a expression was significantly increased when neurons were exposed to glutamate [20µM], but this increase was blocked by the N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801. Expression of Comt, Pde4b, and Drd2, genes previously shown to be regulated by ZNF804A overexpression, was also significantly changed in an NMDA-dependent manner. Our results describe, for the first time, the unique postnatal neurodevelopmental expression of Zfp804a in the rodent brain and demonstrate that glutamate potentially plays an important role in the regulation of this psychiatric susceptibility gene. These are critical steps toward understanding the biological function of ZNF804A in the mammalian brain.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Encéfalo/citología , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/farmacología , Humanos , Recién Nacido , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Long-Evans , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA