RESUMEN
OBJECTIVE: Drug-resistant temporal lobe epilepsy (TLE) is the most common type of epilepsy for which patients undergo surgery. Despite the best clinical judgment and currently available prediction algorithms, surgical outcomes remain variable. We aimed to build and to evaluate the performance of multidimensional Bayesian network classifiers (MBCs), a type of probabilistic graphical model, at predicting probability of seizure freedom after TLE surgery. METHODS: Clinical, neurophysiological, and imaging variables were collected from 231 TLE patients who underwent surgery at the University of California, San Francisco (UCSF) or the Montreal Neurological Institute (MNI) over a 15-year period. Postsurgical Engel outcomes at year 1 (Y1), Y2, and Y5 were analyzed as primary end points. We trained an MBC model on combined data sets from both institutions. Bootstrap bias corrected cross-validation (BBC-CV) was used to evaluate the performance of the models. RESULTS: The MBC was compared with logistic regression and Cox proportional hazards according to the area under the receiver-operating characteristic curve (AUC). The MBC achieved an AUC of 0.67 at Y1, 0.72 at Y2, and 0.67 at Y5, which indicates modest performance yet superior to what has been reported in the state-of-the-art studies to date. SIGNIFICANCE: The MBC can more precisely encode probabilistic relationships between predictors and class variables (Engel outcomes), achieving promising experimental results compared to other well-known statistical methods. Multisite application of the MBC could further optimize its classification accuracy with prospective data sets. Online access to the MBC is provided, paving the way for its use as an adjunct clinical tool in aiding pre-operative TLE surgical counseling.
Asunto(s)
Epilepsia del Lóbulo Temporal , Teorema de Bayes , Epilepsia Refractaria , Electroencefalografía , Epilepsia del Lóbulo Temporal/diagnóstico , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
PURPOSE: Proton therapy is becoming an increasingly popular cancer treatment modality due to the proton's physical advantage in that it deposits the majority of its energy at the distal end of its track where the tumor is located. The proton range in a material is determined from the stopping power ratio (SPR) of the material. However, SPR is typically estimated based on a computed tomography (CT) scan which can lead to range estimation errors due to the difference in x-ray and proton interactions in matter, which can preclude the ability to utilize protons to their full potential. Applications of magnetic resonance imaging (MRI) in radiotherapy have increased over the past decade and using MRI to calculate SPR directly could provide numerous advantages. The purpose of this study was to develop a practical implementation of a novel multimodal imaging method for estimating SPR and compare the results of this method to physical measurements in which values were computed directly using tissue substitute materials fabricated to mimic skin, muscle, adipose, and spongiosa bone. METHODS: For both the multimodal imaging method and physical measurements, SPR was calculated using the Bethe-Bloch equation from values of relative electron density and mean ionization potential determined for each tissue. Parameters used to estimate SPR using the multimodal imaging method were extracted from Dixon water-only and (1 H) proton density-weighted zero echo time MRI sequences and CT, with both kVCT and MVCT used separately to evaluate the performance of each. For comparison, SPR was also computed from kVCT using the stoichiometric method, the current clinical standard. RESULTS: Results showed that our multimodal imaging approach using MRI with either kVCT or MVCT was in close agreement to SPR calculated from physical measurements for the four tissue substitutes evaluated. Using MRI and MVCT, SPR values estimated using our method were within 1% of physical measurements and were more accurate than the stoichiometric method for the tissue types studied. CONCLUSIONS: We have demonstrated the methodology for improved estimation of SPR using the proposed multimodal imaging framework.
Asunto(s)
Terapia de Protones , Tomografía Computarizada por Rayos X , Electrones , Imagen por Resonancia Magnética , Fantasmas de Imagen , Protones , Planificación de la Radioterapia Asistida por ComputadorRESUMEN
OBJECTIVE: Simultaneous PET/MRIs vary in their quantitative PET performance due to inherent differences in the physical systems and differences in the image reconstruction implementation. This variability in quantitative accuracy confounds the ability to meaningfully combine and compare data across scanners. In this work, we define image reconstruction parameters that lead to comparable contrast recovery curves across simultaneous PET/MRI systems. METHOD: The NEMA NU-2 image quality phantom was imaged on one GE Signa and on one Siemens mMR PET/MRI scanner. The phantom was imaged at 9.7:1 contrast with standard spheres (diameter 10, 13, 17, 22, 28, 37 mm) and with custom spheres (diameter: 8.5, 11.5, 15, 25, 32.5, 44 mm) using a standardized methodology. Analysis was performed on a 30 min listmode data acquisition and on 6 realizations of 5 min from the listmode data. Images were reconstructed with the manufacturer provided iterative image reconstruction algorithms with and without point spread function (PSF) modeling. For both scanners, a post-reconstruction Gaussian filter of 3-7 mm in steps of 1 mm was applied. Attenuation correction was provided from a scaled computed tomography (CT) image of the phantom registered to the MR-based attenuation images and verified to align on the non-attenuation corrected PET images. For each of these image reconstruction parameter sets, contrast recovery coefficients (CRCs) were determined for the SUVmean, SUVmax and SUVpeak for each sphere. A hybrid metric combining the root-mean-squared discrepancy (RMSD) and the absolute CRC values was used to simultaneously optimize for best match in CRC between the two scanners while simultaneously weighting toward higher resolution reconstructions. The image reconstruction parameter set was identified as the best candidate reconstruction for each vendor for harmonized PET image reconstruction. RESULTS: The range of clinically relevant image reconstruction parameters demonstrated widely different quantitative performance across cameras. The best match of CRC curves was obtained at the lowest RMSD values with: for CRCmean, 2 iterations-7 mm filter on the GE Signa and 4 iterations-6 mm filter on the Siemens mMR, for CRCmax, 4 iterations-6 mm filter on the GE Signa, 4 iterations-5 mm filter on the Siemens mMR and for CRCpeak, 4 iterations-7 mm filter with PSF on the GE Signa and 4 iterations-7 mm filter on the Siemens mMR. Over all reconstructions, the RMSD between CRCs was 1.8%, 3.6% and 2.9% for CRC mean, max and peak, respectively. The solution of 2 iterations-3 mm on the GE Signa and 4 iterations-3 mm on Siemens mMR, both with PSF, led to simultaneous harmonization and with high CRC and low RMSD for CRC mean, max and peak with RMSD values of 2.8%, 5.8% and 3.2%, respectively. CONCLUSIONS: For two commercially available PET/MRI scanners, user-selectable parameters that control iterative updates, image smoothing and PSF modeling provide a range of contrast recovery curves that allow harmonization in harmonization strategies of optimal match in CRC or high CRC values. This work demonstrates that nearly identical CRC curves can be obtained on different commercially available scanners by selecting appropriate image reconstruction parameters.
RESUMEN
Cerebrovascular abnormality is linked to Alzheimer's disease and related dementias (ADRDs). ApoE-Æ4 (APOE4) is known to play a critical role in neurovascular dysfunction, however current medical imaging technologies are limited in quantification. This cross-sectional study tested the feasibility of a recently established imaging modality, quantitative ultra-short time-to-echo contrast-enhanced magnetic resonance imaging (QUTE-CE MRI), to identify small vessel abnormality early in development of human APOE4 knock-in female rat (TGRA8960) animal model. At 8 months, 48.3% of the brain volume was found to have significant signal increase (75/173 anatomically segmented regions; q<0.05 for multiple comparisons). Notably, vascular abnormality was detected in the tri-synaptic circuit, cerebellum, and amygdala, all of which are known to functionally decline throughout AD pathology and have implications in learning and memory. The detected abnormality quantified with QUTE-CE MRI is likely a result of hyper-vascularization, but may also be partly, or wholly, due to contributions from blood-brain-barrier leakage. Further exploration with histological validation is warranted to verify the pathological cause. Regardless, these results indicate that QUTE-CE MRI can detect neurovascular dysfunction with high sensitivity with APOE4 and may be helpful to provide new insights into health and disease.
Asunto(s)
Apolipoproteína E4/genética , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/anomalías , Animales , Barrera Hematoencefálica/patología , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Imagen por Resonancia Magnética , RatasRESUMEN
PURPOSE: To develop bone material analogues that can be used in construction of phantoms for simultaneous PET/MRI systems. METHODS: Plaster was used as the basis for the bone material analogues tested in this study. It was mixed with varying concentrations of an iodinated CT contrast, a gadolinium-based MR contrast agent, and copper sulfate to modulate the attenuation properties and MRI properties (T1 and T2*). Attenuation was measured with CT and 68 Ge transmission scans, and MRI properties were measured with quantitative ultrashort echo time pulse sequences. A proof-of-concept skull was created by plaster casting. RESULTS: Undoped plaster has a 511 keV attenuation coefficient (~0.14 cm-1 ) similar to cortical bone (0.10-0.15 cm-1 ), but slightly longer T1 (~500 ms) and T2* (~1.2 ms) MR parameters compared to bone (T1 ~ 300 ms, T2* ~ 0.4 ms). Doping with the iodinated agent resulted in increased attenuation with minimal perturbation to the MR parameters. Doping with a gadolinium chelate greatly reduced T1 and T2*, resulting in extremely short T1 values when the target T2* values were reached, while the attenuation coefficient was unchanged. Doping with copper sulfate was more selective for T2* shortening and achieved comparable T1 and T2* values to bone (after 1 week of drying), while the attenuation coefficient was unchanged. CONCLUSIONS: Plaster doped with copper sulfate is a promising bone material analogue for a PET/MRI phantom, mimicking the MR properties (T1 and T2*) and 511 keV attenuation coefficient of human cortical bone.