Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 59(21): 15928-15935, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33040524

RESUMEN

The synthesis of nanomaterials with a narrow size distribution is challenging, especially for III-V semiconductor nanoparticles (also known as quantum dots). Concerning phosphides, this issue has been largely attributed the use of overly reactive precursors. The problem is exacerbated due to the narrow range of competent reagents for III-V semiconductor syntheses. We report the use of sterically encumbered tris(triethylsilyl) phosphine and tris(tributylsilyl) phosphine for InP quantum dot (QD) synthesis among others. The hypothesis was that these reagents are less reactive than the near-ubiquitous precursor tris(trimethylsilyl) phosphine and can be used to create more homogeneous materials. It was found that the InP products' quantum yields and emission color saturation (fwhm) were improved, but not to the levels realized in CdSe QDs. Regardless, these reagents have other positive attributes; they are less pyrophoric and can be applied toward the synthesis of II-V semiconductors and organophosphorus compounds. Concerning safe practices, we demonstrate that ammonium bifluoride is an effective replacement for highly toxic HF for the post-treatment of III-V semiconductor quantum dots.

2.
J Phys Chem Lett ; 14(15): 3621-3626, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37023397

RESUMEN

Quantum dot (QD)-organic dye couple chromophores are topical due to their applications in biology, catalysis, and energy. The maximization of energy transfer efficiency can be guided by the underlying Förster or Dexter mechanisms; however, the impact of fluorescence intermittency must also be considered. Here we demonstrate that the average ⟨ton⟩ and ⟨toff⟩ times of dye acceptors in coupled QD-dye chromophores are substantially affected by the donors' blinking behavior. With regard to biological imaging, this effect beneficially minimizes the photobleaching of the acceptor dye. The implications for alternative energy are less encouraging as the acceptors' capacity to store energy, using ⟨ton⟩/⟨toff⟩ as a metric, was reduced by as much as ∼95%. These detrimental effects can be mitigated by suppressing QD blinking via surface treatment. This study also demonstrates several instances of the nonconformity of QD blinking dynamics to a power law distribution, as a robust examination of the off times reveals log-normal behavior that is consistent with the Albery model.


Asunto(s)
Puntos Cuánticos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes/química , Puntos Cuánticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA