Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunopharmacol Immunotoxicol ; : 1-11, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38800857

RESUMEN

OBJECTIVE: Microglia in the central nervous system regulate neuroinflammation that leads to a wide range of neuropathological alterations. The present study investigated the anti-neuroinflammatory properties of nobiletin (Nob) derivative, 5-acetoxy-6,7,8,3',4'-pentamethoxyflavone (5-Ac-Nob), in lipopolysaccharide (LPS)-activated BV2 microglia. MATERIALS AND METHODS: By using the MTT assay, Griess method, flow cytometry, and enzyme-linked immunosorbent assay (ELISA), we determined the cell viability, the levels of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory factors (interleukin 1 beta; IL-1ß, interleukin 6; IL-6, tumor necrosis factor alpha; TNF-α and prostaglandin E2; PGE2) in LPS-stimulated BV2 microglia. Toll-like receptor 4 (TLR4)-mediated myeloid differentiation primary response gene 88 (MyD88)/nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) signaling pathway and signal transducer and activator of transcription 3 (STAT3) were measured by western blotting. Analysis of NO generation and mRNA of pro-inflammatory cytokines was confirmed in the zebrafish model. RESULTS: 5-Ac-Nob reduced cell death, the levels of NO, ROS, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and pro-inflammatory factors in LPS-activated BV-2 microglial cells. TLR4-mediated MyD88/NF-κB and MAPK pathway (p38, ERK and JNK) after exposure to 5-Ac-Nob was also suppressed. Moreover, 5-Ac-Nob inhibited phosphorylated STAT3 proteins expression in LPS-induced BV-2 microglial cells. Furthermore, we confirmed that 5-Ac-Nob decreased LPS-induced NO generation and mRNA of pro-inflammatory cytokines in the zebrafish model. CONCLUSIONS: Our findings suggest that 5-Ac-Nob represses neuroinflammatory responses by inhibiting TLR4-mediated signaling pathway and STAT3. As a result of these findings, 5-Ac-Nob has potential as an anti-inflammatory agent against microglia-mediated neuroinflammatory disorders.

2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047358

RESUMEN

Salvinal is a natural lignan isolated from the roots of Salvia mitorrhiza Bunge (Danshen). Previous studies have demonstrated its anti-proliferative activity in both drug-sensitive and -resistant cancer cell lines, with IC50 values ranging from 4-17 µM. In this study, a series of salvinal derivatives was synthesized and evaluated for the structure-activity relationship. Among the twenty-four salvinal derivatives, six compounds showed better anticancer activity than salvinal. Compound 25 displayed excellent anticancer activity, with IC50 values of 0.13-0.14 µM against KB, KB-Vin10 (overexpress MDR/Pgp), and KB-7D (overexpress MRP) human carcinoma cell lines. Based on our in vitro microtubule depolymerization assay, compound 25 showed depolymerization activity in a dose-dependent manner. Our findings indicate that compound 25 is a promising anticancer agent with depolymerization activity that has potential for the management of malignance.


Asunto(s)
Antineoplásicos , Humanos , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Antineoplásicos/farmacología , Moduladores de Tubulina/farmacología , Microtúbulos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Estructura Molecular , Línea Celular Tumoral , Simulación del Acoplamiento Molecular
3.
Biosci Biotechnol Biochem ; 86(5): 646-654, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35218182

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory and pruritic disease; it can be treated by inhibiting inflammation. Sarcodia suiae sp. is an edible, artificially cultivable red algae with multiple bioactivities. We assessed the anti-inflammatory activity of the ethyl acetate fraction of S. suiae sp. ethanol extract (PD1) on 1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD-like lesions. Results show that PD1 alleviated symptoms and significantly decreased clinical dermatitis score. PD1 inhibited serum immunoglobulin E expression and alleviated swelling in the spleen and subiliac lymph nodes. In skin tissues, PD1 alleviated aberrant hyperplasia, decreased epidermal thickness, and decreased the accumulation of mast cells. PD1 mediated the recovery of skin barrier-related proteins, such as claudin-1 and filaggrin. Our study demonstrated that PD1 has anti-inflammatory effects, alleviates AD symptoms, inhibits inflammatory responses in skin tissues, and restores barrier function in DNCB-induced AD mice. These findings reveal that S. suiae sp. extract provides an alternative protective option against AD.


Asunto(s)
Dermatitis Atópica , Rhodophyta , Acetatos , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , Etanol/metabolismo , Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/metabolismo , Rhodophyta/metabolismo , Piel
4.
Chem Biodivers ; 19(7): e202200137, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35726787

RESUMEN

Regulation of key digestive enzymes is currently considered an effective remedy for diabetes mellitus. In this study, bioactive constituents were purified from Terminalia boivinii fruits and identified by 1 H-NMR, 13 C-NMR and EI-MS. In vitro and in silico methods were used to evaluate α-glucosidase, α-amylase, and lipase inhibition activities. Compounds 1, 2, and 4-7 with IC50 values between 89 and 445 µM showed stronger α-glucosidase inhibitory activities than the antihyperglycemic drug acarbose (IC50 =1463.0±29.5 µM). However, the compounds showed lower inhibitory effects against α-amylase and lipase with IC50 values above 500 µM than acarbose (IC50 =16.7±3.5 µM) and ursolic acid (IC50 =89.5±5.6 µM), respectively. Lineweaver-Burk plots showed that compounds 1, 2, and 7 were non-competitive inhibitors, compounds 4 and 5 were competitive inhibitors and compound 6 was a mixed-type inhibitor. Fluorescence spectroscopic data showed that the compounds altered the microenvironment and conformation of α-glucosidase. Computer simulations indicated that the compounds and enzyme interacted primarily through hydrogen bonding. The findings indicated that the compounds were inhibitors of α-glucosidase and provided significant structural basis for understanding the binding activity of the compounds with α-glucosidase.


Asunto(s)
Terminalia , alfa-Glucosidasas , Acarbosa , Frutas/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Cinética , Lipasa/metabolismo , Simulación del Acoplamiento Molecular , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo
5.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362072

RESUMEN

A kind of hydroxylated polymethoxyflavone (PMFs) existing in the citrus genus, 5-Demethyltangeretin (5-DTAN), has been reported to possess several bioactivities in vitro and in vivo. The aim of this study was to investigate whether acetylation could enhance the anticancer activity and oral bioavailability of 5-DTAN. PC-3 human prostate cancer cells were treated with tangeretin (TAN), 5-DTAN, and 5-acetylated TAN (5-ATAN), and the results showed that the cytotoxic effect 5-ATAN (IC50 value of 5.1 µM) on the cell viability of PC-3 cells was stronger than that of TAN (IC50 value of 17.2 µM) and 5-DTAN (IC50 value of 11.8 µM). Compared to 5-DTAN, 5-ATAN treatment caused a more pronounced DNA ladder, increased the sub-G1 phase population, and induced G2/M phase arrest in the cell cycle of PC-3 cells. We also found that 5-ATAN triggered the activation of caspase-3 and the progression of the intrinsic mitochondrial pathway in PC-3 cells, suggesting the induction of apoptosis. In a cell wound healing test, 5-ATAN dose-dependently reduced the cell migration, and the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was decreased after 48 h of 5-ATAN treatment. Moreover, oral administration of 5-ATAN showed a significantly stronger inhibitory effect on tumor size and tumor weight in tumor-bearing nude mice than those of vehicle or the 5-DTAN group (p < 0.05). Furthermore, pharmacokinetic results showed that single-dose oral administration of 5-ATAN exhibited a higher maximum concentration (Cmax) and area under the curve (AUC) of 5-DTAN in plasma than that of 5-DTAN. More extensive distribution of 5-DTAN to most tissues of mice was also observed in mice treated with 5-ATAN for 7 days. In conclusion, acetylation strongly enhances the anticancer activity and oral bioavailability of 5-DTAN and could be a promising strategy to promote the potential bioactivities of natural products.


Asunto(s)
Antineoplásicos , Flavonas , Animales , Humanos , Masculino , Ratones , Acetilación , Apoptosis , Disponibilidad Biológica , Línea Celular Tumoral , Metaloproteinasa 2 de la Matriz , Ratones Desnudos , Flavonas/química , Flavonas/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética
6.
Molecules ; 27(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408453

RESUMEN

(1) Background: The current research intended to obtain functional compounds from agricultural by-products. A functional tea seed flavonoid, kaempferol-3-O-[2-O-ß-d-xylopyranosyl-6-O-α-L-rhanmopyranosyl]-ß-d-glucopyranoside (KXRG), was isolated from tea seed dregs. We further determined its chemical structure and evaluated the protective effects of KXRG against local and systemic inflammation in vivo; (2) Methods: First, cytotoxicity and proinflammatory cytokine release were examined in a cell-culture system. The biological activities of KXRG were investigated in a mouse model of ear edema, and from inflammatory damage to organs as demonstrated by histologic examination, in addition to brain function evaluation using the Y-maze test. Serum biochemical analysis and western blotting were utilized to explore the related cellular factors; (3) Results: KXRG inhibited IL-6 in RAW264.7 cells at a non-toxic concentration. Further experiments confirmed that KXRG exerted a stronger effect than indomethacin in terms of the prevention of 12-O-tetradecanoylphorbol acetate (TPA)-induced ear inflammation in a mouse model. KXRG feeding significantly prevented LPS-induced small intestine, liver, and kidney inflammatory damage, as demonstrated by histologic examination. KXRG also significantly improved LPS-induced cognitive impairments. Serum biochemical analysis showed that KXRG elevated antioxidant capacity and reduced levels of proinflammatory cytokines. Western blotting revealed that KXRG reduced the COX-2 expression induced by LPS in mouse tissues; (4) Conclusions: KXRG can be purified from agricultural waste, and hence it is inexpensive, with large amounts of raw materials available. Thus, KXRG has strong potential for further development as a wide-use anti-systemic inflammation drug to prevent human disease.


Asunto(s)
Disfunción Cognitiva , Lipopolisacáridos , Animales , Antiinflamatorios/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Quempferoles , Lipopolisacáridos/efectos adversos , Ratones , Té/química
7.
Pharm Biol ; 60(1): 1214-1223, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35760558

RESUMEN

CONTEXT: Momordica charantia L. (Cucurbitaceae), known as bitter melon, is an edible fruit cultivated in the tropics. In this study, an active compound, 5ß,19-epoxycucurbita-6,23(E)-diene-3ß,19(R),25-triol (ECDT), isolated from M. charantia was investigated in regard to its cytotoxic effect on human hepatocellular carcinoma (HCC) cells. OBJECTIVE: To examine the mechanisms of ECDT-induced apoptosis in HCC cells. MATERIALS AND METHODS: The inhibitive activity of ECDT on HA22T HCC cells was examined by MTT assay, colony formation assay, wound healing assay, TUNEL/DAPI staining, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and JC-1 dye. HA22T cells were treated with ECDT (5, 10, 15, 20 and 25 µM) for 24 h, and the molecular mechanism of cells apoptosis was examined by Western blot. Cells treated with vehicle DMSO were used as the negative control. RESULTS: ECDT inhibited the cell proliferation of HA22T cells in a dose-dependent manner. Flow cytometry showed that ECDT treatment at 10-20 µM increased early apoptosis by 10-14% and late apoptosis by 2-5%. Western blot revealed that ECDT treatment activated the mitochondrial-dependent apoptotic pathway, and ECDT-induced apoptosis was mediated by the caspase signalling pathway and activation of JNK and p38MAPK. Pre-treatment of cells with MAPK inhibitors (SB203580 or SP600125) reversed the ECDT-induced cell death, which further supported the involvement of the p38MAPK and JNK pathways. DISCUSSION AND CONCLUSIONS: Our results indicated that ECDT can induce apoptosis through the p38MAPK and JNK pathways in HA22T cells. The findings suggested that ECDT has a valuable anticancer property with the potential to be developed as a new chemotherapeutic agent for the treatment of HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Momordica charantia , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/patología , Proteínas Quinasas p38 Activadas por Mitógenos
8.
Int J Med Sci ; 18(8): 1848-1856, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746602

RESUMEN

The intestines have been recognized as important tissues for metabolic regulation, including glycemic control, but their vital role in promoting the anti-diabetic effects of bitter melon, the fruit of Momordica charantia L, has seldom been characterized, nor acknowledged. Evidence suggests that bitter melon constituents can have substantial interactions with the intestinal epithelial cells before circulating to other tissues. We therefore characterized the effects of bitter melon extract (BME) on intestinal epithelial cells. BME was found to contain substantial amounts of carbohydrates, proteins, and triterpenoids. TNF-α induced insulin resistance in an enterocyte cell line of IEC-18 cells, and BME promoted glucose utilization of the insulin-resistant cells. Further analysis suggested that the increased glucose consumption was a result of the combined effects of insulin sensitizing and insulin substitution functions of BME. The functions of insulin substitution were likely generated due to the activation of AMP-activated protein kinase. Meanwhile, BME acted as a glucagon-like peptide 1 (GLP-1) secretagogue on enteroendocrine cells, which may be mediated by the activation of bitter-taste receptors. Therefore, BME possesses insulin sensitizing, insulin substitution, and GLP-1 secretagogue functions upon intestinal cells. These effects of BME on intestinal cells likely play a significant part in the anti-diabetic action of bitter melon.


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Momordica charantia/química , Extractos Vegetales/farmacología , Línea Celular , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Células Enteroendocrinas/efectos de los fármacos , Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Mucosa Intestinal/metabolismo , Extractos Vegetales/uso terapéutico
9.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948341

RESUMEN

Resveratrol butyrate ester (RBE) complexes have demonstrated higher antioxidant capacity and anti-fat accumulation activity in previous studies. In this study, silica gel, high-performance liquid chromatography, and 1H nuclear magnetic resonance were used for separation and identification of RBE complex components. With the exception of resveratrol, five different structures of ester derivatives were separated from silica gel: 3,4'-di-O-butanoylresveratrol (ED2, 18.8%), 3-O-butanoylresveratrol (ED4, 35.7%), 4'-O-butanoylresveratrol (ED5, 4.4%), 3,5,4'-tri-O-butanoylresveratrol (ED6, 1.5%), and 3,5-di-O-butanoylresveratrol (ED7, 0.7%). Among the ester derivatives obtained, ED2 and ED4 were the main ester derivatives in the RBE complex. Thus, the cellular antioxidant activities of the RBE mixture, ED2, and ED4 were evaluated. Results showed that the antioxidant capacity of ED2 and ED4 was higher than that of the RBE mixture, demonstrating that the number and position of butyrate esterification sites are related to cell survival rate and antioxidant capacity. This study is the first to report the successful isolation, structural identification, and cellular biological antioxidant activity of RBE complex derivatives, which are key characteristics for the potential practical application of RBE complexes.


Asunto(s)
Butiratos , Ésteres/química , Resveratrol , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Ésteres/análisis , Ésteres/aislamiento & purificación , Ésteres/farmacología , Células Hep G2 , Humanos , Espectroscopía de Protones por Resonancia Magnética
10.
Molecules ; 26(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499307

RESUMEN

Cutibacterium acnes (formerly Propionibacterium acnes) is one of the major bacterial species responsible for acne vulgaris. Numerous bioactive compounds from Momordica charantia Linn. var. abbreviata Ser. have been isolated and examined for many years. In this study, we evaluated the suppressive effect of two cucurbitane-type triterpenoids, 5ß,19-epoxycucurbita-6,23-dien-3ß,19,25-triol (Kuguacin R; KR) and 3ß,7ß,25-trihydroxycucurbita-5,23-dien-19-al (TCD) on live C. acnes-stimulated in vitro and in vivo inflammatory responses. Using human THP-1 monocytes, KR or TCD suppressed C. acnes-induced production of interleukin (IL)-1ß, IL-6 and IL-8 at least above 56% or 45%, as well as gene expression of these three pro-inflammatory cytokines. However, a significantly strong inhibitory effect on production and expression of tumor necrosis factor (TNF)-α was not observed. Both cucurbitanes inhibited C. acnes-induced activation of the myeloid differentiation primary response 88 (MyD88) (up to 62%) and mitogen-activated protein kinases (MAPK) (at least 36%). Furthermore, TCD suppressed the expression of pro-caspase-1 and cleaved caspase-1 (p10). In a separate study, KR or TCD decreased C. acnes-stimulated mouse ear edema by ear thickness (20% or 14%), and reduced IL-1ß-expressing leukocytes and neutrophils in mouse ears. We demonstrated that KR and TCD are potential anti-inflammatory agents for modulating C. acnes-induced inflammation in vitro and in vivo.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Cucurbitacinas/química , Cucurbitacinas/farmacología , Inflamación/tratamiento farmacológico , Momordica charantia/química , Triterpenos/química , Triterpenos/farmacología , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/inmunología , Acné Vulgar/microbiología , Animales , Citocinas/biosíntesis , Citocinas/genética , Modelos Animales de Enfermedad , Glicósidos/química , Glicósidos/farmacología , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Inflamación/inmunología , Inflamación/microbiología , Masculino , Ratones , Ratones Endogámicos ICR , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Propionibacteriaceae/patogenicidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células THP-1
11.
Molecules ; 26(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34577123

RESUMEN

Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify bioactive compounds from bitter melon leaf. Ethanolic extract of bitter melon leaf was separated into five subfractions by open column chromatography. Subfraction-5-3 significantly inhibited P. gingivalis-induced interleukin (IL)-8 and IL-6 productions in human monocytic THP-1 cells and then was subjected to separation and purification by using different chromatographic methods. Consequently, 5ß,19-epoxycucurbita-6,23(E),25(26)-triene-3ß,19(R)-diol (charantadiol A) was identified and isolated from the subfraction-5-3. Charantadiol A effectively reduced P. gingivalis-induced IL-6 and IL-8 productions and triggered receptors expressed on myeloid cells (TREM)-1 mRNA level of THP-1 cells. In a separate study, charantadiol A significantly suppressed P. gingivalis-stimulated IL-6 and tumor necrosis factor-α mRNA levels in gingival tissues of mice, confirming the inhibitory effect against P. gingivalis-induced periodontal inflammation. Thus, charantadiol A is a potential anti-inflammatory agent for modulating P. gingivalis-induced inflammation.


Asunto(s)
Monocitos , Porphyromonas gingivalis , Animales , Antiinflamatorios/farmacología , Calor , Ratones , Momordica charantia , Periodontitis
12.
Int J Mol Sci ; 21(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466337

RESUMEN

(+)-Bornyl p-coumarate is an active substance that is abundant in the Piper betle stem and has been shown to possess bioactivity against bacteria and a strong antioxidative effect. In the current study, we examined the actions of (+)-bornyl p-coumarate against A2058 and A375 melanoma cells. The inhibition effects of (+)-bornyl p-coumarate on these cell lines were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and the underlying mechanisms were identified by immunostaining, flow cytometry and western blotting of proteins associated with apoptosis and autophagy. Our results demonstrated that (+)-bornyl p-coumarate inhibited melanoma cell proliferation and caused loss of mitochondrial membrane potential, demonstrating treatment induced apoptosis. In addition, western blotting revealed that the process is mediated by caspase-dependent pathways, release of cytochrome C, activation of pro-apoptotic proteins (Bax, Bad and caspase-3/-9) and suppression of anti-apoptotic proteins (Bcl-2, Bcl-xl and Mcl-1). Also, the upregulated expressions of p-PERK, p-eIF2α, ATF4 and CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP) after treatment indicated that (+)-bornyl p-coumarate caused apoptosis via endoplasmic reticulum (ER) stress. Moreover, increased expressions of beclin-1, Atg3, Atg5, p62, LC3-I and LC3-II proteins and suppression by autophagic inhibitor 3-methyladenine (3-MA), indicated that (+)-bornyl p-coumarate triggered autophagy in the melanoma cells. In conclusion, our findings demonstrated that (+)-bornyl p-coumarate suppressed human melanoma cell growth and should be further investigated with regards to its potential use as a chemotherapy drug for the treatment of human melanoma.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ácidos Cumáricos/farmacología , Melanoma/metabolismo , Piper betle/química , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Línea Celular Tumoral , Humanos , Potencial de la Membrana Mitocondrial , Extractos Vegetales/farmacología , Tallos de la Planta/química , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
13.
Molecules ; 24(23)2019 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771186

RESUMEN

One new iridoid, namely neonanin C (1) one monocyclic iridoid ring-opened derivative namely neonanin D (2), two new bis-iridoid derivatives namely reticunin A (3) and reticunin B (4) with sixteen known compounds (5-20) were isolated from the stems of Neonauclea reticulata (Havil.) Merr. These new structures were determined by the detailed analysis of spectroscopic data and comparison with the data of known analogues. Compounds 1-20 were evaluated for inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages cell line. The results showed that all compounds exhibited no obvious cytotoxicity compared to the control group and five compounds including isoboonein (7), syringaresinol (10), (+)-medioresinol (12), protocatechuic acid (14) and trans-caffeic acid (15) exhibited inhibitory activities with IC50 values at 86.27 ± 3.45; 9.18 ± 1.90; 76.18 ± 2.42; 72.91 ± 4.97 and 95.16 ± 1.20 µg/mL, respectively.


Asunto(s)
Antiinflamatorios/farmacología , Iridoides/farmacología , Lipopolisacáridos/efectos adversos , Macrófagos/efectos de los fármacos , Rubiaceae/química , Animales , Antiinflamatorios/química , Concentración 50 Inhibidora , Iridoides/química , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Estructura Molecular , Óxido Nítrico/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tallos de la Planta/química , Células RAW 264.7
14.
Molecules ; 24(11)2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31185647

RESUMEN

Three new dimeric abietane-type diterpenoids, abieta-6,8,11,13-tetraen-12-yl 12-hydroxyabieta-8,11,13-trien-7α-yl peroxide (1), abieta-6,8,11,13-tetraen-12-yl 12-hydroxyabieta-8,11,13-trien-7ß-yl peroxide (2), and 12-hydroxyabieta-8,11,13-trien-7ß-yl 7-oxoabieta-5,8,11,13-tetraen-12-yl peroxide (3), together with four known abietane-type diterpenoids (4-7) were isolated from the methanol extract of the bark of Cryptomeria japonica. Their structures were elucidated on the basis of spectroscopic analysis and comparison of NMR data with those of known analogues. At a concentration of 50 µM, compounds 1, 2, and 3 showed 26.2%, 23.6%, and 35.7% inhibition towards xanthine oxidase enzyme, respectively. In addition, compound 3 also showed 24.9% inhibition toward angiotensin-converting enzyme (ACE).


Asunto(s)
Abietanos/farmacología , Cryptomeria/química , Dimerización , Peróxidos/farmacología , Corteza de la Planta/química , Abietanos/química , Abietanos/aislamiento & purificación , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Espectroscopía de Resonancia Magnética , Peptidil-Dipeptidasa A/metabolismo , Peróxidos/química , Peróxidos/aislamiento & purificación , Conejos , Xantina Oxidasa/antagonistas & inhibidores
15.
Int J Mol Sci ; 19(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042328

RESUMEN

Bornyl cis-4-hydroxycinnamate, a bioactive compound isolated from Piper betle stems, has the potential for use as an anti-cancer agent. This study investigated the effects of bornyl cis-4-hydroxycinnamate on cell migration and invasion in melanoma cells. Cell migration and invasion were compared in A2058 and A375 melanoma cell lines treated with/without bornyl cis-4-hydroxycinnamate (1⁻6 µM). To examine whether bornyl cis-4-hydroxycinnamate has a potential anti-metastatic effect on melanoma cells, cell migration and invasion assays were performed using a Boyden chamber assay and a transwell chamber in A2058 and A375 cells. Gelatin zymography was employed to determine the enzyme activities of MMP-2 and MMP-9. Cell lysates were collected for Western blotting analysis of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors of metalloproteinase-1/2 (TIMP-1/2), as well as key molecules in the mitogen-activated protein kinase (MAPK), focal adhesion kinase (FAK)/ phosphatidylinositide-3 kinases (PI3K)/Akt/ mammalian target of rapamycin (mTOR), growth factor receptor-bound protein 2 (GRB2) signaling pathways. Our results demonstrated that bornyl cis-4-hydroxycinnamate is a potentially useful agent that inhibits melanoma cell migration and invasion, and altered melanoma cell metastasis by reducing MMP-2 and MMP-9 expression through inhibition of the FAK/PI3K/Akt/mTOR, MAPK, and GRB2 signaling pathways. Moreover, bornyl cis-4-hydroxycinnamate inhibited the process of the epithelial-to-mesenchymal transition in A2058 and A375 melanoma cells. These findings suggested that bornyl cis-4-hydroxycinnamate has potential as a chemotherapeutic agent, and warrants further investigation for its use in the management of human melanoma.


Asunto(s)
Antineoplásicos/farmacología , Canfanos/farmacología , Ácidos Cumáricos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Fitoquímicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Relación Dosis-Respuesta a Droga , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Hidróxidos/química , Invasividad Neoplásica , Metástasis de la Neoplasia , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/uso terapéutico , Piper betle/química , Tallos de la Planta/química , Serina-Treonina Quinasas TOR/metabolismo
16.
Int J Mol Sci ; 19(5)2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29734677

RESUMEN

Bornyl cis-4-hydroxycinnamate, an active compound isolated from Piper betle stems, was investigated in terms of its effects on A2058 and A375 melanoma cell proliferation and protein expression in this study. We used flow cytometric analysis to examine the early stages of apoptosis induced by bornyl cis-4-hydroxycinnamate in the two melanoma cell lines and employed comparative proteomic analysis to investigate the effects of this compound on protein expression in A375 cells. Master maps generated by PDQuest software from two-dimensional electrophoresis (2-DE) analysis of A375 cells showed that the expression levels of 35 proteins were significantly altered, with 18 proteins upregulated and 17 downregulated. The proteomics study identified several proteins that are involved in mitochondrial dysfunction and endoplasmic reticulum stress (ER stress), in addition to apoptosis-associated proteins, including prohibitin, hypoxia-upregulated protein 1, stress 70 protein, 78 kDa glucose-regulated protein (GRP78), and protein deglycase DJ-1 (protein DJ-1) in melanoma cells exposed to bornyl cis-4-hydroxycinnamate. The treatment also resulted in a marked decline of the mitochondrial membrane potential, in cytochrome C release into the cytosol, in the activation of Bcl-2-associated X protein (Bax), Bcl-2-associated death promoter protein (Bad), caspase-3, and caspase-9, and in the decreased expression of p-Bad, B-cell lymphoma 2 (Bcl-2), Bcl-xl, and induced myeloid leukemia cell differentiation protein-1 (Mcl-1), indicating that apoptosis induced by bornyl cis-4-hydroxycinnamate was mediated by the mitochondria through the caspase-dependent pathway. Also, salubrinal (an eukaryotic initiation factor 2α inhibitor; eIF2α inhibitor) was able to protect the cells from bornyl cis-4-hydroxycinnamate-induced apoptosis. Bornyl cis-4-hydroxycinnamate-related cell death also implied that the protein kinase R-like endoplasmic reticulum kinase (PERK)⁻eIF2α⁻ATF4⁻CHOP signal pathways was activated upon bornyl cis-4-hydroxycinnamate treatment. Altogether, our results support the conclusion that bornyl cis-4-hydroxycinnamate-induced apoptosis in melanoma cells is associated with mechanisms correlated with the activation of caspase cascades, mitochondrial dysfunction, and endoplasmic reticulum stress, and indicate that this molecule has the potential to be developed as a chemotherapeutic agent for human melanoma.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ácidos Cumáricos/farmacología , Melanoma/tratamiento farmacológico , Proteínas de Neoplasias/genética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ácidos Cumáricos/química , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Melanoma/genética , Melanoma/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Piper betle/química , Tallos de la Planta/química , Transducción de Señal/efectos de los fármacos
17.
Molecules ; 23(7)2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973552

RESUMEN

Three new secoiridoid constituents, goncarin A−C (1⁻3), and a new derivative, goncarin A monoacetate (4), along with two known lignins, pinoresinol (5) and paulownin (6), were isolated from the seed of Gonocaryum calleryanum (Baill.) Becc. The structures of the new metabolites were determined on the basis of extensive spectroscopic analysis, particularly mass spectroscopy and 2D NMR (¹H⁻¹H COSY, HMQC, HMBC, and NOESY) spectroscopy. The aim of this study was to identify the anti-inflammatory effects of compounds 1⁻6 on lipopolysaccharide (LPS)-stimulated murine macrophage cell lines (RAW 264.7). Following stimulation with LPS, elevated levels of nitric oxide (NO) production were detected in RAW 264.7 cells; however, pretreatment with compounds 1⁻6 significantly inhibited the production of NO (around 40⁻80%, p < 0.01⁻0.05), by suppressing the expression of inducible NO synthase (iNOS). In addition, LPS-stimulated tumor necrosis factor-α (TNF-α) production was significantly reduced by compounds 1⁻3 (25⁻40%, p < 0.01⁻0.05). These results suggested that compounds 1⁻3 may exert anti-inflammatory activity, and that compounds 1⁻3 may be considered a potential therapeutic for the treatment of inflammatory diseases associated with macrophage activation.


Asunto(s)
Antiinflamatorios/farmacología , Campanulaceae/química , Iridoides/farmacología , Lipopolisacáridos/efectos adversos , Óxido Nítrico/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Regulación de la Expresión Génica/efectos de los fármacos , Iridoides/química , Iridoides/aislamiento & purificación , Ratones , Estructura Molecular , Óxido Nítrico Sintasa de Tipo II/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Células RAW 264.7 , Semillas/química , Factor de Necrosis Tumoral alfa/metabolismo
18.
Int J Mol Sci ; 18(11)2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29149031

RESUMEN

Research so far has only shown that edible red macroalgae, Sarcodia ceylanica has the ability to eliminate free radicals and anti-diabetic, anti-bacterial properties. This study was conducted both in vitro and in vivo on the ethyl acetate extract (PD1) of farmed red macroalgae in order to explore its anti-inflammatory properties. In order to study the in vitro anti-inflammatory effects of PD1, we used lipopolysaccharide (LPS) to induce inflammatory responses in murine macrophages. For evaluating the potential in vivo anti-inflammatory and antinociceptive effects of PD1, we used carrageenan-induced rat paw edema to produce inflammatory pain. The in vitro results indicated that PD1 inhibited the LPS-induced pro-inflammatory protein, inducible nitric oxide synthase (iNOS) in macrophages. Oral PD1 can reduce carrageenan-induced paw edema and inflammatory nociception. PD1 can significantly inhibit carrageenan-induced leukocyte infiltration, as well as the protein expression of inflammatory mediators (iNOS, interleukin-1ß, and myeloperoxidase) in inflammatory tissue. The above results indicated that PD1 has great potential to be turned into a functional food or used in the development of new anti-inflammatory and antinociceptive agents. The results from this study are expected to help scientists in the continued development of Sarcodia ceylanica for other biomedical applications.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Extractos Vegetales/farmacología , Algas Marinas/química , Acetatos/química , Animales , Biomarcadores/metabolismo , Carragenina/efectos adversos , Fraccionamiento Químico , Modelos Animales de Enfermedad , Edema/patología , Edema/terapia , Macrófagos/efectos de los fármacos , Ratones , Células RAW 264.7 , Ratas , Ratas Wistar
19.
Molecules ; 22(7)2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28714918

RESUMEN

In this study, the cytotoxicities and anti-inflammatory activities of five resveratrol derivatives-vitisinol A, (+)-ε-viniferin, (+)-vitisin A, (-)-vitisin B, and (+)-hopeaphenol-isolated from Ampelopsis brevipedunculata var. hancei were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lipopolysaccharide (LPS)-stimulated RAW264.7 cells, respectively. The result from MTT assay analysis indicated that vitisinol A has lower cytotoxicity than the other four well-known oligostilbenes. In the presence of vitisinol A (5 µM), the significant reduction of inflammation product (nitric oxide, NO) in LPS-induced RAW264.7 cells was measured using Griess reaction assay. In addition, the under-expressed inflammation factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in LPS-induced RAW264.7 cells monitored by Western blotting simultaneously suggested that vitisinol A has higher anti-inflammatory effect compared with other resveratrol derivatives. Finally, the anti-inflammatory effect of vitisinol A was further demonstrated on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ear edema in mice. As a preliminary functional evaluation of natural product, the anti-inflammatory effect of vitisinol A is the first to be examined and reported by this study.


Asunto(s)
Ampelopsis/química , Antiinflamatorios/química , Biflavonoides/química , Catequina/química , Extractos Vegetales/química , Proantocianidinas/química , Estilbenos/química , Animales , Antiinflamatorios/farmacología , Biflavonoides/farmacología , Biomarcadores , Catequina/farmacología , Ciclooxigenasa 2/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Estructura Molecular , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Proantocianidinas/farmacología , Células RAW 264.7 , Estilbenos/farmacología
20.
Molecules ; 21(4): 490, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27089309

RESUMEN

Three new sesquiterpenoids, 2α-hydroxy-3,3,6α,9ß-tetramethyltricyclo[4,3,2(1,4)]undecane (1), 11-acetoxyeudesman-4ß-ol (4), and 2α,3ß-dihydroxy-4ß-methyl-6,8,10-cadinatriene (6), four known sesquiterpenoids (2, 3, 5, and 7), together with eight known diterpenoids (8-15), were isolated from the wood of Cunninghamia konishii. Their structures were determined by detailed analysis of spectroscopic data and comparison with the data of known analogues. Four sesquiterpenoids (1, 4, 5, and 6) and all the diterpenoids (8-15) were evaluated for inhibition of nitric oxide production in lipopolysaccharides (LPS)-activated RAW 264.7 macrophages and the results showed that compounds 10 and 15 exhibited moderate inhibitory activities against nitric oxide production.


Asunto(s)
Diterpenos/química , Óxido Nítrico/biosíntesis , Sesquiterpenos/química , Animales , Cunninghamia/química , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Ratones , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/química , Células RAW 264.7 , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Madera/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA