Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 2): 252-259, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241123

RESUMEN

In this study, a combination of X-ray excited optical luminescence (XEOL), time-resolved XEOL (TR-XEOL) and the Hanbury-Brown and Twiss (HB-T) interferometer at the Taiwan Photon Source (TPS) 23A X-ray nanoprobe beamline for exploring quantum materials is demonstrated. On the basis of the excellent spatial resolution rendered using a nano-focused beam, emission distributions of artificial micro-diamonds can be obtained by XEOL maps, and featured emission peaks of a selected local area can be obtained by XEOL spectra. The hybrid bunch mode of the TPS not only provides a sufficiently high peak power density for experiments at each beamline but also permits high-quality temporal domain (∼200 ns) measurements for investigating luminescence dynamics. From TR-XEOL measurements, the decay lifetime of micro-diamonds is determined to be approximately 16 ns. Furthermore, the XEOL spectra of artificial micro-diamonds can be investigated by the HB-T interferometer to identify properties of single-photon sources. The unprecedented strategy of combining XEOL, TR-XEOL and the HB-T interferometer at the X-ray nanoprobe beamline will open new avenues with significant characterization abilities for unraveling the emission mechanisms of single-photon sources for quantum materials.

2.
Micromachines (Basel) ; 15(1)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38258224

RESUMEN

In this study, the successful synthesis of bimetallic nickel/cobalt phosphide nanosheets (Ni-Co-P NSs) via the hydrothermal method and the subsequent high-temperature phosphorization process were both confirmed. Ni-Co-P NSs exhibited excellent electrocatalytic activity for the electrochemical non-enzymatic DA sensing. The surface morphologies and physicochemical properties of Ni-Co-P NSs were characterized by atomic force microscopy (AFM), field-emission scanning (FESEM), field-emission transmission electron microscopy (FETEM), and X-ray diffraction (XRD). Further, the electrochemical performance was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The metallic nature of phosphide and the synergistic effect of Ni/Co atoms in Ni-Co-P NSs provided abundant catalytic active sites for the electrochemical redox reaction of DA, which exhibited a remarkable consequence with a wide linear range from 0.3~50 µM, a high sensitivity of 2.033 µA µM-1 cm-2, a low limit of detection of 0.016 µM, and anti-interference ability. As a result, the proposed Ni-Co-P NSs can be considered an ideal electrode material for the electrochemical non-enzymatic DA sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA