Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Med ; 29(2): 344-347, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36473500

RESUMEN

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages, including the BA.2-derived BA.2.75.2 and the BA.5-derived BQ.1.1 and XBB.1, have accumulated additional spike mutations that may affect vaccine effectiveness. Here we report neutralizing activities of three human serum panels collected from individuals 23-94 days after dose 4 of a parental mRNA vaccine; 14-32 days after a BA.5 bivalent booster from individuals with 2-4 previous doses of parental mRNA vaccine; or 14-32 days after a BA.5 bivalent booster from individuals with previous SARS-CoV-2 infection and 2-4 doses of parental mRNA vaccine. The results showed that a BA.5 bivalent booster elicited a high neutralizing titer against BA.4/5 measured at 14-32 days after boost; however, the BA.5 bivalent booster did not produce robust neutralization against the newly emerged BA.2.75.2, BQ.1.1 or XBB.1. Previous infection substantially enhanced the magnitude and breadth of BA.5 bivalent booster-elicited neutralization. Our data support a vaccine update strategy that future boosters should match newly emerged circulating SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas Sintéticas , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas de ARNm
2.
Emerg Microbes Infect ; 12(2): 2271089, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37824708

RESUMEN

The highly mutated BA.2.86, with over 30 spike protein mutations in comparison to Omicron BA.2 and XBB.1.5 variants, has raised concerns about its potential to evade COVID-19 vaccination or prior SARS-CoV-2 infection-elicited immunity. In this study, we employ a live SARS-CoV-2 neutralization assay to compare the neutralization evasion ability of BA.2.86 with other emerged SARS-CoV-2 subvariants, including BA.2-derived CH.1.1, Delta-Omicron recombinant XBC.1.6, and XBB descendants XBB.1.5, XBB.1.16, XBB.2.3, EG.5.1 and FL.1.5.1. Our results show that BA.2.86 is less neutralization evasive than XBB sublineages. XBB descendants XBB.1.16, EG.5.1, and FL.1.5.1 continue to significantly evade neutralization induced by the parental COVID-19 mRNA vaccine and a BA.5 Bivalent booster. Notably, when compared to XBB.1.5, the more recent XBB descendants, particularly EG.5.1, display increased resistance to neutralization. Among all the tested variants, CH.1.1 exhibits the greatest neutralization evasion. In contrast, XBC.1.6 shows a slight reduction but remains comparably sensitive to neutralization when compared to BA.5. Furthermore, a recent XBB.1.5-breakthrough infection significantly enhances the breadth and potency of cross-neutralization. These findings reinforce the expectation that the upcoming XBB.1.5 mRNA vaccine would likely boost the neutralization of currently circulating variants, while also underscoring the critical importance of ongoing surveillance to monitor the evolution and immune evasion potential of SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2/genética , Bioensayo , Anticuerpos Neutralizantes , Anticuerpos Antivirales
3.
Viruses ; 15(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37766263

RESUMEN

A reliable and efficient serological test is crucial for monitoring neutralizing antibodies against SARS-CoV-2 and its variants of concern (VOCs). Here, we present an integrated research-clinical platform for a live SARS-CoV-2 neutralization assay, utilizing highly attenuated SARS-CoV-2 (Δ3678_WA1-spike). This strain contains mutations in viral transcription regulation sequences and deletion in the open-reading-frames 3, 6, 7, and 8, allowing for safe handling in biosafety level 2 (BSL-2) laboratories. Building on this backbone, we constructed a genetically stable reporter virus (mGFP Δ3678_WA1-spike) by incorporating a modified green fluorescent protein sequence (mGFP). We also constructed mGFP Δ3678_BA.5-spike and mGFP Δ3678_XBB.1.5-spike by substituting the WA1 spike with variants BA.5 and XBB.1.5 spike, respectively. All three viruses exhibit robust fluorescent signals in infected cells and neutralization titers in an optimized fluorescence reduction neutralization assay that highly correlates with a conventional plaque reduction assay. Furthermore, we established that a streamlined robot-aided Bench-to-Clinics COVID-19 Neutralization Test workflow demonstrated remarkably sensitive, specific, reproducible, and accurate characteristics, allowing the assessment of neutralization titers against SARS-CoV-2 variants within 24 h after sample receiving. Overall, our innovative approach provides a valuable avenue for large-scale testing of clinical samples against SARS-CoV-2 and VOCs at BSL-2, supporting pandemic preparedness and response strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA