Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
ACS Appl Mater Interfaces ; 12(51): 56935-56942, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33314924

RESUMEN

Atomic layer deposition (ALD) was used to control the stoichiometry of thin lithium aluminosilicate films, thereby enabling crystallization into the ion-conducting ß-eucryptite LiAlSiO4 phase. The rapid thermal annealed ALD film developed a well-defined epitaxial relationship to the silicon substrate: ß-LiAlSiO4 (12̅10)||Si (100) and ß-LiAlSiO4 (101̅0)||Si (001). The extrapolated room temperature ionic conductivity was found to be 1.2 × 10-7 S/cm in the [12̅10] direction. Because of the unique 1-D channel along the c axis of ß-LiAlSiO4, the epitaxial thin film has the potential to facilitate ionic transport if oriented with the c axis normal to the electrode surface, making it a promising electrolyte material for three-dimensional lithium-ion microbatteries.

2.
J Am Chem Soc ; 130(50): 16908-13, 2008 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19053479

RESUMEN

We report an effective method to fabricate two-dimensional (2D) periodic oxide nanopatterns using S-layer proteins as a template. Specifically, S-layer proteins with a unit cell dimension of 20 nm were reassembled on silicon substrate to form 2D arrays with ordered pores of nearly identical sizes (9 nm). Octadecyltrichlorosilane (ODTS) was utilized to selectively react with the S-layer proteins, but not the Si surface exposed through the pores defined by the proteins. Because of the different surface functional groups on the ODTS-modified S-layer proteins and Si surface, area-selective atomic layer deposition of metal oxide-based high-k materials, such as hafnium oxide, in the pores was achieved. The periodic metal oxide nanopatterns were generated on Si substrate after selective removal of the ODTS-modified S-layer proteins. These nanopatterns of high-k materials are expected to facilitate further downscaling of logic and memory nanoelectronic devices.


Asunto(s)
Proteínas Bacterianas/química , Desoxirribonucleasas/química , Nanoestructuras/química , Óxidos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/ultraestructura , Microscopía de Fuerza Atómica , Nanoestructuras/ultraestructura , Silicio/química , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
3.
ACS Appl Mater Interfaces ; 9(42): 36980-36988, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28925262

RESUMEN

A radical-enhanced atomic layer deposition (RE-ALD) process was developed for growing ferrimagnetic CoFe2O4 thin films. By utilizing bis(2,2,6,6-tetramethyl-3,5-heptanedionato) cobalt(II), tris(2,2,6,6-tetramethyl-3,5-heptanedionato) iron(III), and atomic oxygen as the metal and oxidation sources, respectively, amorphous and stoichiometric CoFe2O4 films were deposited onto SrTiO3 (001) substrates at 200 °C. The RE-ALD growth rate obtained for CoFe2O4 is ∼2.4 Å/supercycle, significantly higher than the values reported for thermally activated ALD processes. Microstructural characterization by X-ray diffraction and transmission electron microscopy indicate that the CoFe2O4 films annealed between 450 and 750 °C were textured polycrystalline with an epitaxial interfacial layer, which allows strain-mediated tuning of the magnetic properties given its highly magnetostrictive nature. The magnetic behavior was studied as a function of film thickness and annealing temperature: saturation magnetization (Ms) ranged from 260 to 550 emu/cm3 and magnetic coercivity (Hc) ranged from 0.2 to 2.2 kOe. Enhanced magnetic anisotropy was achieved in the thinner samples, whereas the overall magnetic strength improved after annealing at higher temperatures. The RE-ALD CoFe2O4 thin films exhibit magnetic properties that are comparable to both bulk crystal and films grown by other deposition methods, with thickness as low as ∼7 nm, demonstrating the potential of RE-ALD for the synthesis of high-quality magnetic oxides with large-scale processing compatibility.

4.
ACS Nano ; 7(5): 3815-22, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23627699

RESUMEN

We demonstrate that incorporation of octadecyltrimethoxysilane (OTMS)-functionalized, spectrally tuned, gold/silica (Au/SiO2) core/shell nanospheres and nanorods into the active layer of an organic photovoltaic (OPV) device led to an increase in photoconversion efficiency (PCE). A silica shell layer was added onto Au core nanospheres and nanorods in order to provide an electrically insulating surface that does not interfere with carrier generation and transport inside the active layer. Functionalization of the Au/SiO2 core/shell nanoparticles with the OTMS organic ligand was then necessary to transfer the Au/SiO2 core/shell nanoparticles from an ethanol solution into an OPV polymer-compatible solvent, such as dichlorobenzene. The OTMS-functionalized Au/SiO2 core/shell nanorods and nanospheres were then incorporated into the active layers of two OPV polymer systems: a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCB60M) OPV device and a poly[2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,4-b]dithiophene-alt-5-dibutyloctyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4-dione] (PBDTT-DPP:PC60BM) OPV device. For the P3HT:PC60BM polymer with a band edge of ~700 nm, the addition of the core/shell nanorods with an aspect ratio (AR) of ~2.5 (extinction peak ~670 nm) resulted in a 7.1% improvement in PCE, while for the PBDTT-DPP:PC60BM polymer with a band edge of ~860 nm, the addition of core/shell nanorods with an AR of ~4 (extinction peak ~830 nm) resulted in a 14.4% improvement in PCE. The addition of Au/SiO2 core/shell nanospheres to the P3HT:PC60BM polymer resulted in a 2.7% improvement in PCE, while their addition to a PBDTT-DPP:PC60BM polymer resulted in a 9.1% improvement. The PCE and Jsc enhancements were consistent with external quantum efficiency (EQE) measurements, and the EQE enhancements spectrally matched the extinction spectra of Au/SiO2 nanospheres and nanorods in both OPV polymer systems.

5.
Annu Rev Chem Biomol Eng ; 3: 235-62, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22691090

RESUMEN

The invention of the transistor followed by more than 60 years of aggressive device scaling and process integration has enabled the global information web and subsequently transformed how people communicate and interact. The principles and practices built upon chemical processing of materials on silicon have been widely adapted and applied to other equally important areas, such as microfluidic systems for chemical and biological analysis and microscale energy storage solutions. The challenge of continuing these technological advances hinges on further improving the performance of individual devices and their interconnectivity while making the manufacturing processes economical, which is dictated by the materials' innate functionality and how they are chemically processed. In this review, we highlight challenges in scaling up the silicon wafers and scaling down the individual devices as well as focus on needs and challenges in the synthesis and integration of multifunctional materials.


Asunto(s)
Sistemas Microelectromecánicos/métodos , Microfluídica/métodos , Nanoestructuras/química , Silicio/química , Cinética , Imanes , Sistemas Microelectromecánicos/instrumentación , Microfluídica/instrumentación , Semiconductores , Termodinámica
6.
Micron ; 43(11): 1127-33, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22770619

RESUMEN

Tin (Sn) crystal growth on Sn-based anodes in lithium ion batteries is hazardous for reasons such as possible short-circuit failure by Sn whiskers and Sn-catalyzed electrolyte decomposition, but the growth mechanism of Sn crystals during battery cycling is not clear. Here we report different growth mechanisms of Sn crystal during the lithiation and delithiation processes of SnO(2) nanowires revealed by in situ transmission electron microscopy (TEM). Large spherical Sn nanoparticles with sizes of 20-200nm grew instantaneously upon lithiation of a single-crystalline SnO(2) nanowire at large current density (j>20A/cm(2)), which suppressed formation of the Li(x)Sn alloy but promoted agglomeration of Sn atoms. Control experiments of Joule-heating (j≈2400A/cm(2)) the pristine SnO(2) nanowires resulted in melting of the SnO(2) nanowires but not Sn particle growth, indicating that the abnormal Sn particle growth was induced by both chemical reduction (i.e., breaking the SnO(2) lattice to produce Sn atoms) and agglomeration of the Sn atoms assisted by Joule heating. Intriguingly, Sn crystals grew out of the nanowire surface via a different "squeeze-out" mechanism during delithiation of the lithiated SnO(2) nanowires coated with an ultra-thin solid electrolyte LiAlSiO(x) layer. It is attributed to the negative stress gradient generated by the fast Li extraction in the surface region through the Li(+)-conducting LiAlSiO(x) layer. Our previous studies showed that Sn precipitation does not occur in the carbon-coated SnO(2) nanowires, highlighting the effect of nanoengineering on tailoring the electrochemical reaction kinetics to suppress the hazardous Sn whiskers or nanoparticles formation in a lithium ion battery.

7.
Adv Mater ; 22(6): 769-78, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20217787

RESUMEN

The semiconductor industry will soon be launching 32 nm complementary metal oxide semiconductor (CMOS) technology node using 193 nm lithography patterning technology to fabricate microprocessors with more than 2 billion transistors. To ensure the survival of Moore's law, alternative patterning techniques that offer advantages beyond conventional top-down patterning are aggressively being explored. It is evident that most alternative patterning techniques may not offer compelling advantages to succeed conventional top-down lithography for silicon integrated circuits, but alternative approaches may well indeed offer functional advantages in realising next-generation information processing nanoarchitectures such as those based on cellular, bioinsipired, magnetic dot logic, and crossbar schemes. This paper highlights and evaluates some patterning methods from the Center on Functional Engineered Nano Architectonics in Los Angeles and discusses key benchmarking criteria with respect to CMOS scaling.


Asunto(s)
Electrónica , Nanoestructuras/química , ADN/química , Puntos Cuánticos , Semiconductores
8.
Nano Lett ; 7(8): 2389-94, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17604405

RESUMEN

Nanoheterostructures of NiSi/Si/NiSi in which the length of the Si region can be controlled down to 2 nm have been produced using in situ point contact reaction between Si and Ni nanowires in an ultrahigh vacuum transmission electron microscope. The Si region was found to be highly strained (more than 12%). The strain increases with the decreasing Si layer thickness and can be controlled by varying the heating temperature. It was observed that the Si nanowire is transformed into a bamboo-type grain of single-crystal NiSi from both ends following the path with low-activation energy. We propose the reaction is assisted by interstitial diffusion of Ni atoms within the Si nanowire and is limited by the rate of dissolution of Ni into Si at the point contact interface. The rate of incorporation of Ni atoms to support the growth of NiSi has been measured to be 7 x 10(-4) s per Ni atom. The nanoscale epitaxial growth rate of single-crystal NiSi has been measured using high-resolution lattice-imaging videos. On the basis of the rate, we can control the consumption of Si and, in turn, the dimensions of the nanoheterostructure down to less than 2 nm, thereby far exceeding the limit of conventional patterning process. The controlled huge strain in the controlled atomic scale Si region, potential gate of Si nanowire-based transistors, is expected to significantly impact the performance of electronic devices.


Asunto(s)
Cristalización/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Níquel/química , Compuestos de Silicona/química , Silicio/química , Fuerza Compresiva , Elasticidad , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
9.
J Pharmacol Exp Ther ; 315(2): 601-8, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16020629

RESUMEN

There is a wealth of information from animal models and clinical opioid-analgesic use that indicates a significant role for opioid receptors in the modulation of bladder activity. The novel benzhydrylpiperazine compound DPI-221 [4-((alpha-S)-alpha-((2S,5R)-2,5-dimethyl-4-(3-fluorobenzyl)-1-piperazinyl)benzyl)-N,N-diethylbenzamide] was characterized as having delta receptor selectivity using radioligand binding (K(i) = 2.0 +/- 0.7 nM, delta receptor; 1800 +/- 360 nM, mu receptor; and 2300 +/- 680 nM, kappa receptor), and agonist activity was demonstrated in the mouse isolated vas deferens where DPI-221 inhibited electrically induced contractions with an IC(50) value of 88 +/- 7.5 nM. In the guinea pig isolated ileum, DPI-221 had no effect on electrically induced contractions at concentrations as high as 1 microM. Sterile saline was infused (7 ml/h) into the bladder of Sprague-Dawley rats, via a transmural catheter; DPI-221 (1.0 to 20 mg/kg p.o.) significantly increased the interval between micturition events, whereas peak void pressure was not significantly decreased by any dose of DPI-221. The micturition effects of 10 mg/kg p.o. DPI-221 were blocked by naltrindole, indicating a delta receptor mechanism of action. In isolated rat bladder strips, DPI-221 was ineffective at relaxing detrusor muscle precontracted with carbachol. The most crucial safety aspect of delta agonist administration is the incidence of seizure-like convulsions in rodents. DPI-221 produced no convulsions at doses up to 100 mg/kg p.o. in mice, although rapid bolus i.v. injection of 5 mg/kg produced convulsions in 3% of mice tested. These findings indicate a good safety profile for DPI-221 administered orally, with potent efficacy in modifying bladder activity.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Piperazinas/farmacología , Receptores Opioides delta/agonistas , Micción/efectos de los fármacos , Animales , Compuestos de Bencidrilo/antagonistas & inhibidores , Análisis de los Gases de la Sangre , Carbacol/farmacología , Convulsivantes/farmacología , Relación Dosis-Respuesta a Droga , Cobayas , Íleon/efectos de los fármacos , Técnicas In Vitro , Masculino , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Dimensión del Dolor/efectos de los fármacos , Piperazinas/antagonistas & inhibidores , Ensayo de Unión Radioligante , Ratas , Ratas Sprague-Dawley , Vejiga Urinaria/efectos de los fármacos , Conducto Deferente/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA