RESUMEN
Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.
Asunto(s)
Carpas , Proteolisis , Receptores de Reconocimiento de Patrones , Rhabdoviridae , Proteínas de Motivos Tripartitos , Proteínas Virales , Proteínas de Pez Cebra , Pez Cebra , Animales , Carpas/virología , Proteína 58 DEAD Box/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/metabolismo , Inmunidad Innata , Receptores de Reconocimiento de Patrones/metabolismo , Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Transducción de Señal , Proteínas de Motivos Tripartitos/deficiencia , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitinación , Proteínas Virales/metabolismo , Viremia/veterinaria , Viremia/virología , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/virología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
TANK-binding kinase 1 (TBK1) undergoes alternative splicing, and the previously reported TBK1 isoforms are negative regulators of RIG-I-like receptor-mediated type I IFN production. Although a study has suggested that grass carp TBK1 has an opposite effect at high- and low-titer of grass carp reovirus (GCRV) infection, the functions of grass carp TBK1 isoforms in GCRV infection remain unclear. In this study, we show that a TBK1 isoform from grass carp (Ctenopharyngodon idellus) named as gcTBK1_tv3, which has a 1-aa difference with zebrafish TBK1_tv3, inhibits the replication and infection of GCRV both at high and low titers of infection in C. idellus kidney cells. gcTBK1_tv3 can colocalize and interact with the NS80 and NS38 proteins of GCRV. Furthermore, gcTBK1_tv3 specifically degrades the NS80 and NS38 proteins of GCRV through the ubiquitin-proteasome pathway. Mechanistically, gcTBK1_tv3 promotes the degradation of NS80 or NS38 for K48-linked ubiquitination by targeting the Lys503 residue of NS80 or Lys328 residue of NS38, respectively, which ultimately impairs the production of cytoplasmic viral inclusion bodies and limits GCRV replication and infection. Taken together, our findings provide insight into the function of TBK1 isoform in the antiviral immune response and demonstrate that TBK1 isoform can target the nonstructural proteins of GCRV for impairing the formation of viral inclusion bodies.
Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Reoviridae , Reoviridae , Animales , Proteínas no Estructurales Virales/metabolismo , Carpas/metabolismo , Pez Cebra , Línea Celular , Infecciones por Reoviridae/veterinaria , Isoformas de Proteínas/metabolismo , Anticuerpos Antivirales/metabolismoRESUMEN
Liver X receptors (LXRs) are nuclear receptors involved in metabolism and the immune response. Different from mammalian LXRs, which include two isoforms, LXRα and LXRß, only a single LXRα gene exists in the piscine genomes. Although a study has suggested that piscine LXR inhibits intracellular bacterial survival, the functions of piscine LXRα in viral infection are unknown. In this study, we show that overexpression of LXRα from grass carp (Ctenopharyngodon idellus), which is named as gcLXRα, increases host susceptibility to grass carp reovirus (GCRV) infection, whereas gcLXRα knockdown in CIK (C. idellus kidney) cells inhibits GCRV infection. Consistent with these functional studies, gcLXRα knockdown promotes the transcription of antiviral genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway, including IFN regulatory factor (IRF3) and the type I IFN IFN1. Further results show that gcLXRα knockdown induces the expression of CREB-binding protein (CBP), a transcriptional coactivator. In the knockdown of CBP, the inhibitory effect of gcLXRα knockdown in limiting GCRV infection is completely abolished. gcLXRα also interacts with IRF3 and CBP, which impairs the formation of the IRF3/CBP transcription complex. Moreover, gcLXRα heterodimerizes with RXRg, which cooperatively impair the transcription of the RLR antiviral signaling pathway and promote GCRV infection. Taken together, to our knowledge, our findings provide new insight into the functional correlation between nuclear receptor LXRα and the RLR antiviral signaling pathway, and they demonstrate that gcLXRα can impair the RLR antiviral signaling pathway and the production of type I IFN via forming gcLXRα/RXRg complexes and attenuating IRF3/CBP complexes.
Asunto(s)
Carpas , Enfermedades de los Peces , Interferón Tipo I , Infecciones por Reoviridae , Reoviridae , Animales , Humanos , Antivirales/farmacología , Receptores X del Hígado/metabolismo , Carpas/metabolismo , Proteína de Unión a CREB/metabolismo , Transducción de Señal , Interferón Tipo I/metabolismo , Proteínas de Peces/genética , Mamíferos/metabolismo , Factor 3 Regulador del Interferón/metabolismoRESUMEN
OBJECTIVE: Precancerous metaplasia transition to dysplasia poses a risk for subsequent intestinal-type gastric adenocarcinoma. However, the molecular basis underlying the transformation from metaplastic to cancerous cells remains poorly understood. DESIGN: An integrated analysis of genes associated with metaplasia, dysplasia was conducted, verified and characterised in the gastric tissues of patients by single-cell RNA sequencing and immunostaining. Multiple mouse models, including homozygous conditional knockout Klhl21-floxed mice, were generated to investigate the role of Klhl21 deletion in stemness, DNA damage and tumour formation. Mass-spectrometry-based proteomics and ribosome sequencing were used to elucidate the underlying molecular mechanisms. RESULTS: Kelch-like protein 21 (KLHL21) expression progressively decreased in metaplasia, dysplasia and cancer. Genetic deletion of Klhl21 enhances the rapid proliferation of Mist1+ cells and their descendant cells. Klhl21 loss during metaplasia facilitates the recruitment of damaged cells into the cell cycle via STAT3 signalling. Increased STAT3 activity was confirmed in cancer cells lacking KLHL21, boosting self-renewal and tumourigenicity. Mechanistically, the loss of KLHL21 promotes PIK3CB mRNA translation by stabilising the PABPC1-eIF4G complex, subsequently causing STAT3 activation. Pharmacological STAT3 inhibition by TTI-101 elicited anticancer effects, effectively impeding the transition from metaplasia to dysplasia. In patients with gastric cancer, low levels of KLHL21 had a shorter survival rate and a worse response to adjuvant chemotherapy. CONCLUSIONS: Our findings highlighted that KLHL21 loss triggers STAT3 reactivation through PABPC1-mediated PIK3CB translational activation, and targeting STAT3 can reverse preneoplastic metaplasia in KLHL21-deficient stomachs.
Asunto(s)
Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Metaplasia , Factor de Transcripción STAT3 , Transducción de Señal , Neoplasias Gástricas , Animales , Humanos , Ratones , Adenocarcinoma/patología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Homeostasis , Metaplasia/metabolismo , Ratones Noqueados , Lesiones Precancerosas/patología , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/genética , Factor de Transcripción STAT3/metabolismo , Estómago/patología , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Proteínas del Citoesqueleto/genética , Proteínas de Ciclo Celular/genéticaRESUMEN
The impacts of patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M-rs738409, methylenetetrahydrofolate reductase (MTHFR) Ala222Val-rs1801133, and aldehyde dehydrogenase 2 (ALDH2) Glu504Lys-rs671 on the outcomes of Taiwanese patients with steatotic liver disease (SLD) have remained elusive. An 8-year prospective cohort study of patients with (n = 546) and without (n = 580) SLD (controls) was undertaken in a Taiwanese tertiary care center. The 546 SLD patients comprised 306 (56.0%) men and 240 (44.0%) women with mean ages of 53.3 and 56.4 years, respectively. Compared with the controls, SLD patients had an increased frequency of the PNPLA3 I148M-rs738409 GG genotype (25.5 vs. 5.9%, p = 0.001). Among the SLD patients, 236 (43.1%) suffered cardiovascular events, 52 (9.5%) showed extrahepatic cancers, 13 (2.38%) experienced hepatic events, including hepatocellular carcinoma (n = 3, 0.5%) and liver cirrhosis (n = 8, 1.47%), and none died. The Fibrosis-4 (FIB-4) scores were associated with extrahepatic cancer (hazard ratio [HR] 1.325; 95% confidence interval [CI], 1.038-1.691) and cirrhosis development (HR 1.532; 95% CI, 1.055-2.224), and the PNPLA3 I148M-rs738409 G allele (ß = 0.158, 95% CI, 0.054-0.325) was associated with the FIB-4 score. Stratified analyses showed that the impact of the FIB-4 score on extrahepatic cancer development was evident only in SLD patients with the PNPLA3 I148M-rs738409 GG genotype (HR 1.543; 95% CI, 1.195-1.993) and not in patients with the GC or CC genotype. Moreover, the ALDH2 Glu504Lys-rs671 G allele had a dose-dependent effect on alcoholism, and the MTHFR and ALDH2 genotypes were not significantly associated with SLD patient outcomes. In conclusion, special vigilance should be exercised for emerging extrahepatic cancer in SLD patients with the PNPLA3 I148M-rs738409 GG genotype and high FIB-4 scores.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aldehído Deshidrogenasa Mitocondrial/genética , Carcinoma Hepatocelular/genética , Predisposición Genética a la Enfermedad , Genotipo , Cirrosis Hepática/complicaciones , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Polimorfismo de Nucleótido Simple , Estudios ProspectivosRESUMEN
Metabolic reprogramming is a potential treatment strategy for autosomal dominant polycystic kidney disease (ADPKD). Metformin has been shown to inhibit the early stages of cyst formation in animal models. However, metformin can lead to lactic acidosis in diabetic patients with advanced chronic kidney disease, and its efficacy in ADPKD is still not fully understood. Here, we investigated the effect of metformin in an established hypomorphic mouse model of PKD that presents stable and heritable knockdown of Pkd1. The Pkd1 miRNA transgenic mice of both genders were randomized to receive metformin or saline injections. Metformin was administrated through daily intraperitoneal injection from postnatal day 35 for 4 weeks. Unexpectedly, metformin treatment at a concentration of 150 mg/kg increased disease severity, including kidney-to-body weight ratio, cystic index and plasma BUN levels, and was associated with increased renal tubular cell proliferation and plasma lactate levels. Functional enrichment analysis for cDNA microarrays from kidney samples revealed significant enrichment of several pro-proliferative pathways including ß-catenin, hypoxia-inducible factor-1α, protein kinase Cα and Notch signaling pathways in the metformin-treated mutant mice. The plasma metformin concentrations were still within the recommended therapeutic range for type 2 diabetic patients. Short-term metformin treatment in a second Pkd1 hypomorphic model (Pkd1RC/RC) was however neutral. These results demonstrate that metformin may exacerbate late-stage cyst growth associated with the activation of lactate-related signaling pathways in Pkd1 deficiency. Our findings indicate that using metformin in the later stage of ADPKD might accelerate disease progression and call for the cautious use of metformin in these patients.
Asunto(s)
Quistes , Metformina , Riñón Poliquístico Autosómico Dominante , Animales , Quistes/metabolismo , Modelos Animales de Enfermedad , Femenino , Riñón/metabolismo , Ácido Láctico/metabolismo , Masculino , Metformina/metabolismo , Metformina/farmacología , Ratones , Ratones Transgénicos , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismoRESUMEN
BACKGROUND: Despite the advances of therapies, multiple myeloma (MM) remains an incurable hematological cancer that most patients experience relapse. Tumor angiogenesis is strongly correlated with cancer relapse. Human leukocyte antigen G (HLA-G) has been known as a molecule to suppress angiogenesis. We aimed to investigate whether soluble HLA-G (sHLA-G) was involved in the relapse of MM. METHODS: We first investigated the dynamics of serum sHLA-G, vascular endothelial growth factor (VEGF) and interleukin 6 (IL-6) in 57 successfully treated MM patients undergoing remission and relapse. The interactions among these angiogenesis-related targets (sHLA-G, VEGF and IL-6) were examined in vitro. Their expression at different oxygen concentrations was investigated using a xenograft animal model by intra-bone marrow and skin grafts with myeloma cells. RESULTS: We found that HLA-G protein degradation augmented angiogenesis. Soluble HLA-G directly inhibited vasculature formation in vitro. Mechanistically, HLA-G expression was regulated by hypoxia-inducible factor-1α (HIF-1α) in MM cells under hypoxia. We thus developed two mouse models of myeloma xenografts in intra-bone marrow (BM) and underneath the skin, and found a strong correlation between HLA-G and HIF-1α expressions in hypoxic BM, but not in oxygenated tissues. Yet when stimulated with IL-6, both HLA-G and HIF-1α could be targeted to ubiquitin-mediated degradation via PARKIN. CONCLUSION: These results highlight the importance of sHLA-G in angiogenesis at different phases of multiple myeloma. The experimental evidence that sHLA-G as an angiogenesis suppressor in MM may be useful for future development of novel therapies to prevent relapse.
Asunto(s)
Antígenos HLA-G , Interleucina-6 , Mieloma Múltiple , Neovascularización Patológica , Mieloma Múltiple/sangre , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Humanos , Animales , Neovascularización Patológica/metabolismo , Antígenos HLA-G/sangre , Antígenos HLA-G/metabolismo , Ratones , Interleucina-6/sangre , Interleucina-6/metabolismo , Masculino , Femenino , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/sangre , Persona de Mediana Edad , Línea Celular Tumoral , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Anciano , Modelos Animales de Enfermedad , AngiogénesisRESUMEN
OBJECTIVE: To assess the effectiveness of indocyanine green (ICG)-guided lymph node (LN) dissection during laparoscopic radical gastrectomy after neoadjuvant chemotherapy (NAC) in patients with locally advanced gastric cancer (LAGC). BACKGROUND: Studies on ICG imaging use in patients with LAGC on NAC are rare. METHODS: Patients with gastric adenocarcinoma (clinical T2-4NanyM0) who received NAC were randomly assigned to receive ICG-guided laparoscopic radical gastrectomy or laparoscopic radical gastrectomy alone. Here, we reported the secondary endpoints including the quality of lymphadenectomy (total retrieved LNs and LN noncompliance) and surgical outcomes. RESULTS: Overall, 240 patients were randomized. Of whom, 236 patients were included in the primary analysis (118 in the ICG group and 118 in the non-ICG group). In the ICG group, the mean number of LNs retrieved was significantly higher than in the non-ICG group within the D2 dissection (48.2 vs 38.3, P < 0.001). The ICG fluorescence guidance significantly decreased the LN noncompliance rates (33.9% vs 55.1%, P = 0.001). In 165 patients without baseline measurable LNs, ICG significantly increased the number of retrieved LNs and decreased the LN noncompliance rate ( P < 0.05). For 71 patients with baseline measurable LNs, the quality of lymphadenectomy significantly improved in those who had a complete response ( P < 0.05) but not in those who did not ( P > 0.05). Surgical outcomes were comparable between the groups ( P > 0.05). CONCLUSIONS: ICG can effectively improve the quality of lymphadenectomy in patients with LAGC who underwent laparoscopic radical gastrectomy after NAC.
Asunto(s)
Adenocarcinoma , Gastrectomía , Verde de Indocianina , Laparoscopía , Escisión del Ganglio Linfático , Terapia Neoadyuvante , Neoplasias Gástricas , Humanos , Verde de Indocianina/administración & dosificación , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Escisión del Ganglio Linfático/métodos , Masculino , Laparoscopía/métodos , Femenino , Persona de Mediana Edad , Gastrectomía/métodos , Anciano , Adenocarcinoma/cirugía , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Colorantes/administración & dosificación , Adulto , Resultado del Tratamiento , Estadificación de Neoplasias , Quimioterapia AdyuvanteRESUMEN
OBJECTIVE: To compare the short-term and long-term outcomes between robotic gastrectomy (RG) and laparoscopic gastrectomy (LG) for gastric cancer. BACKGROUND: The clinical outcomes of RG over LG have not yet been effectively demonstrated. METHODS: This retrospective cohort study included 3599 patients with gastric cancer who underwent radical gastrectomy at eight high-volume hospitals in China from January 2015 to June 2019. Propensity score matching was performed between patients who received RG and LG. The primary end point was 3-year disease-free survival (DFS). RESULTS: After 1:1 propensity score matching, 1034 pairs of patients were enrolled in a balanced cohort for further analysis. The 3-year DFS in the RG and LG was 83.7% and 83.1% ( P =0.745), respectively, and the 3-year overall survival was 85.2% and 84.4%, respectively ( P =0.647). During 3 years of follow-up, 154 patients in the RG and LG groups relapsed (cumulative incidence of recurrence: 15.0% vs 15.0%, P =0.988). There was no significant difference in the recurrence sites between the 2 groups (all P >0.05). Sensitivity analysis showed that RG had comparable 3-year DFS (77.4% vs 76.7%, P =0.745) and overall survival (79.7% vs 78.4%, P =0.577) to LG in patients with advanced (pathologic T2-4a) disease, and the recurrence pattern within 3 years was also similar between the 2 groups (all P >0.05). RG had less intraoperative blood loss, lower conversion rate, and shorter hospital stays than LG (all P >0.05). CONCLUSIONS: For resectable gastric cancer, including advanced cases, RG is a safe approach with comparable 3-year oncological outcomes to LG when performed by experienced surgeons.
Asunto(s)
Laparoscopía , Procedimientos Quirúrgicos Robotizados , Neoplasias Gástricas , Humanos , Resultado del Tratamiento , Estudios Retrospectivos , Neoplasias Gástricas/patología , Gastrectomía , Puntaje de Propensión , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/cirugíaRESUMEN
MicroRNAs (miRNAs) play vital roles in biological activities, but their in vivo imaging is still challenging due to the low abundance and the lack of efficient fluorescent tools. RNA aptamers with high affinity and low background emerge for bioimaging yet suffering from low brightness. We introduce a rational design based on target-mediated entropy-driven toehold exchange (EDTE) to induce the release of RNA aptamer and subsequently light up corresponding fluorophore, which achieves selective imaging of miRNAs with good stability in both living cells and tumor-bearing mouse. Through tailoring recognition unit of the EDTE probes, highly sensitive imaging of different miRNAs including miRNA-125b and miRNA-21 is achieved, confirming its universal bioimaging applications. In comparison with the reported "one-to-one" model, the EDTE strategy shows a remarkable 4.6-time improvement in signal/noise ratio for intracellular imaging of the same miRNA. Particularly, it realizes sensitive imaging of miRNA in vivo, providing a promising tool in investigating functions and interactions of disease-associated miRNAs.
Asunto(s)
Aptámeros de Nucleótidos , Entropía , Colorantes Fluorescentes , MicroARNs , MicroARNs/análisis , MicroARNs/metabolismo , Aptámeros de Nucleótidos/química , Animales , Colorantes Fluorescentes/química , Ratones , Humanos , Imagen Óptica , Ratones DesnudosRESUMEN
Point-of-care testing (POCT) has attracted great interest because of its prominent advantages of rapidness, precision, portability, and real-time monitoring, thus becoming a powerful biomedical device in early clinical diagnosis and convenient medical treatments. However, its complicated manufacturing process and high expense severely impede mass production and broad applications. Herein, an innovative but inexpensive integrated sandwich-paper three-dimensional (3D) cell sensing device is fabricated to in situ wirelessly detect H2O2 released from living cells. The paper-based electrochemical sensing device was constructed by a sealed sandwiched bottom plastic film/fiber paper/top hole-centered plastic film that was printed with patterned electrodes. A new (Fe, Mn)3(PO4)2/N-doped carbon nanorod was developed and immobilized on the sensing carbon electrode while cell culture solution filled the exposed fiber paper, allowing living cells to grow on the fiber paper surrounding the electrode. Due to the significantly shortening diffusion distance to access the sensing sites by such a unique device and a rationally tuned ratio of Fe2+/Mn2+, the device exhibits a fast response time (0.2 s), a low detection limit (0.4 µM), and a wide detection range (2-3200 µM). This work offers great promise for a low-cost and highly sensitive POCT device for practical clinic diagnosis and broad POCT biomedical applications.
RESUMEN
Solar-driven carbon dioxide (CO2) methanation holds significant research value in the context of carbon emission reduction and energy crisis. However, this eight-electron catalytic reaction presents substantial challenges in catalytic activity and selectivity. In this regard, researchers have conducted extensive exploration and achieved significant developments. This review provides an overview of the recent advances and challenges in efficient selective photocatalytic CO2 methanation. It begins by discussing the fundamental principles and challenges in detail, analyzing strategies for improving the efficiency of photocatalytic CO2 conversion to CH4 comprehensively. Subsequently, it outlines the recent applications and advanced characterization methods for photocatalytic CO2 methanation. Finally, this review highlights the prospects and opportunities in this area, aiming to inspire CO2 conversion into high-value CH4 and shed light on the research of catalytic mechanisms.
RESUMEN
Metal phosphides with easy synthesis, controllable morphology, and high capacity are considered as potential anodes for sodium-ion batteries (SIBs). However, the inherent shortcomings of metal phosphating materials, such as conductivity, kinetics, volume strain, etc are not satisfactory, which hinders their large-scale application. Here, a CoP@carbon nanofibers-composite containing rich CoâNâC heterointerface and phosphorus vacancies grown on carbon cloth (CoP1-x@MEC) is synthesized as SIB anode to accomplish extraordinary capacity and ultra-long cycle life. The hybrid composite nanoreactor effectively impregnates defective CoP as active reaction center while offering CoâNâC layer to buffer the volume expansion during charge-discharge process. These vast active interfaces, favored electrolyte infiltration, and a well-structured ion-electron transport network synergistically improve Na+ storage and electrode kinetics. By virtue of these superiorities, CoP1-x@MEC binder-free anode delivers superb SIBs performance including a high areal capacity (2.47 mAh cm-2@0.2 mA cm-2), high rate capability (0.443 mAh cm-2@6 mA cm-2), and long cycling stability (300 cycles without decay), thus holding great promise for inexpensive binder-free anode-based SIBs for practical applications.
RESUMEN
Materials with various single-transition metal atoms dispersed in nitrogenated carbons (MâNâC, M = Fe, Co, and Ni) are synthesized as cathodes to investigate the electrocatalytic behaviors focusing on their enhancement mechanism for performance of Li-S batteries. Results indicate that the order of both electrocatalytic activity and rate capacity for the MâNâC catalysts is Co > Ni > Fe, and the CoâNâC delivers the highest capacity of 1100 mAh g-1 at 1 C and longtime stability at a decay rate of 0.05% per cycle for 1000 cycles, demonstrating excellent battery performance. Theoretical calculations for the first time reveal that MâNâNâC catalysts enable direct conversion of Li2 S6 to Li2 S rather than Li2 S4 to Li2 S by stronger adsorption with Li2 S6 , which also has an order of Co > Ni > Fe. And CoâNâC has the strongest adsorption energy, not only rendering the highest electrocatalytic activity, but also depressing the polysulfides' dissolution into electrolyte for the longest cycle life. This work offers an avenue to design the next generation of highly efficient sulfur cathodes for high-performance Li-S batteries, while shedding light on the fundamental insight of single metal atomic catalytic effects on Li-S batteries.
RESUMEN
High-rate lithium/sodium ion batteries or capacitors are the most promising functional units to achieve fast energy storage that highly depends on charge host materials. Host materials with lamellar structures are a good choice for hybrid charge storage hosts (capacitor or redox type). Emerging layered transition metal carbo-chalcogenides (TMCC) with homogeneous sulfur termination are especially attractive for charge storage. Using density functional theory calculations, six of 30 potential TMCC are screened to be stable, metallic, anisotropic in electronic conduction and mechanical properties due to the lamellar structures. Raman, infrared active modes and frequencies of the six TMCC are well assigned. Interlayer coupling, especially binding energies predict that the bulk layered materials can be easily exfoliated into 2D monolayers. Moreover, Ti2S2C, Zr2S2C are identified as the most gifted Li+/Na+ anode materials with relatively high capacities, moderate volume expansion, relatively low Li+/Na+ migration barriers for batteries or ion-hybrid capacitors. This work provides a foundation for rational materials design, synthesis, and identification of the emerging 2D family of TMCC.
RESUMEN
BACKGROUND/PURPOSE(S): The gut microbiota and its metabolites play crucial roles in pathogenesis of arthritis, highlighting gut microbiota as a promising avenue for modulating autoimmunity. However, the characterization of the gut virome in arthritis patients, including osteoarthritis (OA) and gouty arthritis (GA), requires further investigation. METHODS: We employed virus-like particle (VLP)-based metagenomic sequencing to analyze gut viral community in 20 OA patients, 26 GA patients, and 31 healthy controls, encompassing a total of 77 fecal samples. RESULTS: Our analysis generated 6819 vOTUs, with a considerable proportion of viral genomes differing from existing catalogs. The gut virome in OA and GA patients differed significantly from healthy controls, showing variations in diversity and viral family abundances. We identified 157 OA-associated and 94 GA-associated vOTUs, achieving high accuracy in patient-control discrimination with random forest models. OA-associated viruses were predicted to infect pro-inflammatory bacteria or bacteria associated with immunoglobulin A production, while GA-associated viruses were linked to Bacteroidaceae or Lachnospiraceae phages. Furthermore, several viral functional orthologs displayed significant differences in frequency between OA-enriched and GA-enriched vOTUs, suggesting potential functional roles of these viruses. Additionally, we trained classification models based on gut viral signatures to effectively discriminate OA or GA patients from healthy controls, yielding AUC values up to 0.97, indicating the clinical utility of the gut virome in diagnosing OA or GA. CONCLUSION: Our study highlights distinctive alterations in viral diversity and taxonomy within gut virome of OA and GA patients, offering insights into arthritis etiology and potential treatment and prevention strategies.
Asunto(s)
Artritis Gotosa , Microbioma Gastrointestinal , Osteoartritis , Viroma , Humanos , Artritis Gotosa/virología , Artritis Gotosa/microbiología , Masculino , Osteoartritis/virología , Osteoartritis/microbiología , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Metagenómica , Heces/virología , Heces/microbiologíaRESUMEN
Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.
Asunto(s)
Señalización del Calcio , Calcio , Inmunidad de la Planta , Calcio/metabolismo , Citosol/metabolismo , Espacio Intracelular/metabolismo , Modelos BiológicosRESUMEN
BACKGROUND: Sarcopenia is closely associated with gastric cancer (GC) prognosis. However, its exact definition remains controversial. METHODS: This study included computed tomography images and clinical data of patients from three prospective studies. The skeletal muscle index (SMI) and skeletal muscle radiation attenuation (SMRA) were analyzed, and a new muscle parameter, skeletal muscle gauge (SMG), was obtained by multiplying the two parameters. The values of the three indices for predicting the prognosis of patients with GC were compared. RESULTS: The study included 717 patients. The findings showed median values of 42 cm2/m2 (range, 36.8-48.2 cm2/m2) for SMI, 45 HU (range, 41-49 HU) for SMRA, and 1842 (range, 1454-2260) for SMG. Postoperatively, 111 patients (15.5%) experienced complications. The 3-year overall survival (OS), disease-free survival (DFS), and recurrence-free survival (RFS) were 74.3%, 68.2%, and 70%, respectively. Univariate logistic analysis showed that postoperative complications were associated with SMI (odds ratio [OR] 0.94; 95% confidence interval [CI] 0.92-0.96), SMRA (OR, 0.87; 95% CI 0.84-0.90), and SMG (OR 0.99; 95% CI 0.98-0.99). After a two-step multivariate analysis, only SMG (OR 0.98, 95% CI 0.97-0.99) was an independent protective factor of postoperative complications. Multivariate analysis showed that SMG also was an independent protective factor of OS, DFS, and RFS. The patients were divided into low-SMG (L-SMG) group and high-SMG (H-SMG) groups. Chemotherapy benefit analysis of the patients with stage II low SMG showed that the OS, DFS, and RFS of the chemotherapy group were significantly better than those of the non-chemotherapy group (p < 0.05). CONCLUSION: The prospective large sample data showed that the new muscle parameter, SMG, can effectively predict the short-term outcome and long-term prognosis of patients with resectable gastric cancer. As a new muscle parameter index, SMG is worthy of further study.
Asunto(s)
Sarcopenia , Neoplasias Gástricas , Humanos , Estudios Prospectivos , Músculo Esquelético/patología , Sarcopenia/complicaciones , Pronóstico , Complicaciones Posoperatorias/etiología , Estudios RetrospectivosRESUMEN
BACKGROUND: Robotic gastrectomy (RG) has been widely used to treat gastric cancer. However, whether the short-term outcomes of robotic gastrectomy are superior to those of laparoscopic gastrectomy (LG) for elderly patients with advanced gastric cancer has not been reported. METHODS: The study enrolled of 594 elderly patients with advanced gastric cancer who underwent robotic or laparoscopic radical gastrectomy. The RG cohort was matched 1:3 with the LG cohort using propensity score-matching (PSM). RESULTS: After PSM, 121 patients were included in the robot group and 363 patients in the laparoscopic group. Excluding the docking and undocking times, the operation time of the two groups was similar (P = 0.617). The RG group had less intraoperative blood loss than the LG group (P < 0.001). The time to ambulation and first liquid food intake was significantly shorter in the RG group than in the LG group (P < 0.05). The incidence of postoperative complications did not differ significantly between the two groups (P = 0.14). Significantly more lymph nodes were dissected in the RG group than in the LG group (P = 0.001). Postoperative adjuvant chemotherapy was started earlier in the RG group than in the LG group (P = 0.02). CONCLUSIONS: For elderly patients with advanced gastric cancer, RG is safe and feasible. Compared with LG, RG is associated with less intraoperative blood loss; a faster postoperative recovery time, allowing a greater number of lymph nodes to be dissected; and earlier adjuvant chemotherapy.
Asunto(s)
Laparoscopía , Procedimientos Quirúrgicos Robotizados , Robótica , Neoplasias Gástricas , Humanos , Anciano , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/patología , Puntaje de Propensión , Pérdida de Sangre Quirúrgica , Resultado del Tratamiento , Gastrectomía , Complicaciones Posoperatorias/cirugía , Estudios RetrospectivosRESUMEN
BACKGROUND: Cancer stem cells (CSCs) are critical factors that limit the effectiveness of gastric cancer (GC) therapy. Circular RNAs (circRNAs) are confirmed as important regulators of many cancers. However, their role in regulating CSC-like properties of GC remains largely unknown. Our study aimed to investigate the role of circUBA2 in CSC maintenance and the underlying mechanisms. METHODS: We identified circUBA2 as an upregulated gene using circRNA microarray analysis. qRT-PCR was used to examine the circUBA2 levels in normal and GC tissues. In vitro and in vivo functional assays were performed to validate the role of circUBA2 in proliferation, migration, metastasis and CSC-like properties of GC cell. The relationship between circUBA2, miR-144-5p and STC1 was characterised using bioinformatics analysis, a dual fluorescence reporter system, FISH, and RIP assays. RESULTS: CircUBA2 expression was significantly increased in GC tissues, and patients with GC with high circUBA2 expression had a poor prognosis. CircUBA2 enhances CSC-like properties of GC, thereby promoting cell proliferation, migration, and metastasis. Mechanistically, circUBA2 promoted GC malignancy and CSC-like properties by acting as a sponge for miR-144-5p to upregulate STC1 expression and further activate the IL-6/JAK2/STAT3 signaling pathway. More importantly, the ability of circUBA2 to enhance CSC-like properties was inhibited by tocilizumab, a humanised Interleukin-6 receptor (IL-6R) antibody. Thus, circUBA2 knockdown and tocilizumab synergistically inhibited CSC-like properties. CONCLUSIONS: Our study demonstrated the critical role of circUBA2 in regulating CSC-like properties in GC. CircUBA2 may be a promising prognostic biomarker for GC.