Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569742

RESUMEN

Atopic dermatitis (AD) is a common skin disease worldwide. The major causes of AD are skin barrier defects, immune dysfunction, and oxidative stress. In this study, we investigated the anti-oxidation and anti-inflammation effects of Coffea arabica extract (CAE) and its regulation of the skin barrier and immune functions in AD. In vitro experiments revealed that CAE decreased the reactive oxygen species levels and inhibited the translocation of nuclear factor-κB (NF-κB), further reducing the secretion of interleukin (IL)-1ß and IL-6 induced by interferon-γ (IFN-γ)/tumor necrosis factor-α (TNF-α). Moreover, CAE decreased IFN-γ/TNF-α-induced NLR family pyrin domain-containing 3 (NLRP3), caspase-1, high-mobility group box 1 (HMGB1), and receptor for advanced glycation end products (RAGE) expression levels. It also restored the protein levels of skin barrier function-related markers including filaggrin and claudin-1. In vivo experiments revealed that CAE not only reduced the redness of the backs of mice caused by 2,4-dinitrochlorobenzene (DNCB) but also reduced the levels of pro-inflammatory factors in their skin. CAE also reduced transepidermal water loss (TEWL) and immune cell infiltration in DNCB-treated mice. Overall, CAE exerted anti-oxidation and anti-inflammation effects and ameliorated skin barrier dysfunction, suggesting its potential as an active ingredient for AD treatment.


Asunto(s)
Coffea , Dermatitis Atópica , Ratones , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Factor de Necrosis Tumoral alfa/farmacología , Dinitroclorobenceno/efectos adversos , Piel/patología , Antioxidantes/farmacología , Citocinas , Ratones Endogámicos BALB C
2.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498953

RESUMEN

Psoriasis is a chronic autoimmune disease, and until now, it remains an incurable disease. Therefore, the development of new drugs or agents that ameliorate the disease will have marketing potential. Taiwanofungus camphoratus (TC) is a specific fungus in Taiwan. It is demonstrated to have anticancer, anti-inflammation, and hepatoprotective effects. However, the effects of TC fermented extract on psoriasis are under investigation. In this research, we studied the ability of TC on antioxidative activity and the efficacy of TC on interleukin-17 (IL-17A)-induced intracellular oxidative stress, inflammation-relative, and proliferation-relative protein expression in human keratinocytes. The results of a DPPH radical scavenging assay, reducing power assay, and hydroxyl peroxide inhibition assay indicated that TC has a potent antioxidant ability. Furthermore, TC could reduce IL-17A-induced intracellular ROS generation and restore the NADPH level. In the investigation of pathogenesis, we discovered TC could regulate inflammatory and cell proliferation pathways via p-IKKα/p-p65 and p-mTOR/p-p70S6k signaling pathways in human keratinocytes. In conclusion, TC showed characteristics such as antioxidant, anti-inflammatory, and anti-psoriatic-associated responses. It is expected to be developed as a candidate for oxidative-stress-induced skin disorders or psoriasis treatment.


Asunto(s)
Productos Biológicos , Queratinocitos , Psoriasis , Humanos , Antiinflamatorios/farmacología , Células HaCaT/efectos de los fármacos , Células HaCaT/metabolismo , Interleucina-17/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , FN-kappa B/metabolismo , Psoriasis/patología , Serina-Treonina Quinasas TOR/metabolismo , Productos Biológicos/farmacología
3.
Antioxidants (Basel) ; 9(4)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326032

RESUMEN

Ultraviolet A (UVA) is a major factor in skin aging and damage. Antioxidative materials may ameliorate this UV damage. This study investigated the protective properties of N-(4-bromophenethyl) caffeamide (K36H) against UVA-induced skin inflammation, apoptosis and genotoxicity in keratinocytes. The protein expression or biofactor concentration related to UVA-induced skin damage were identified using an enzyme-linked immunosorbent assay and western blotting. K36H reduced UVA-induced intracellular reactive oxygen species generation and increased nuclear factor erythroid 2-related factor 2 translocation into the nucleus to upregulate the expression of heme oxygenase-1, an intrinsic antioxidant enzyme. K36H inhibited UVA-induced activation of extracellular-signal-regulated kinases and c-Jun N-terminal kinases, reduced the overexpression of matrix metalloproteinase (MMP)-1 and MMP-2 and elevated the expression of the metalloproteinase-1 tissue inhibitor. Moreover, K36H inhibited the phosphorylation of c-Jun and downregulated c-Fos expression. K36H attenuated UVA-induced Bax and caspase-3 expression and upregulated antiapoptotic protein B-cell lymphoma 2 expression. K36H reduced UVA-induced DNA damage. K36H also downregulated inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-6 expression as well as the subsequent generation of prostaglandin E2 and nitric oxide. We observed that K36H ameliorated UVA-induced oxidative stress, inflammation, apoptosis and antiphotocarcinogenic activity. K36H can potentially be used for the development of antiphotodamage and antiphotocarcinogenic products.

4.
Biomolecules ; 9(9)2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547364

RESUMEN

Ultraviolet (UV) exposure has been demonstrated as the most critical factor causing extrinsic skin aging and inflammation. This study explored the protective effects and mechanisms of sesamin against skin photodamage. Sesamin reduced intracellular reactive oxygen species production after UVB irradiation in human dermal fibroblasts. The sesamin treatment attenuated mitogen-activated protein (MAP) kinase phosphorylation and matrix metalloproteinase (MMPs) overexpression induced by UVB exposure, and it significantly enhanced the tissue inhibitor of metalloproteinase-1 protein expression. Sesamin also elevated the total collagen content in human fibroblasts by inhibiting UVB-induced mothers against decapentaplegic homolog 7 (Smad7) protein expression. Sesamin reduced UVB-induced inducible nitric oxide synthase (i-NOS) and cyclooxygenase-2 (COX-2) overexpression and inhibited nuclear factor-kappa B (NF-κB) translocation. Moreover, sesamin may regulate the c-Jun N-terminal kinases (JNK) and p38 MAP kinase pathways, which inhibit COX-2 expression. Sesamin could reduce UVB-induced inflammation, epidermal hyperplasia, collagen degradation, and wrinkle formation in hairless mice. It also reduced MMP-1, interleukin (IL-1), i-NOS, and NF-κB in the mouse skin. These results demonstrate that sesamin had antiphotodamage and anti-inflammatory activities. Sesamin has potential for use as a skin protection agent in antiphotodamage and skin care products.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Dermatitis/tratamiento farmacológico , Dioxoles/administración & dosificación , Lignanos/administración & dosificación , Piel/citología , Piel/patología , Animales , Antiinflamatorios no Esteroideos/farmacología , Línea Celular , Dermatitis/etiología , Dermatitis/metabolismo , Dioxoles/farmacología , Modelos Animales de Enfermedad , Fibroblastos/clasificación , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Hiperplasia , Lignanos/farmacología , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Pelados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Piel/efectos de los fármacos , Piel/efectos de la radiación , Envejecimiento de la Piel/efectos de los fármacos , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Rayos Ultravioleta/efectos adversos
5.
Antioxidants (Basel) ; 8(10)2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31590372

RESUMEN

This study investigated the effects and mechanisms of 1,2-bis[(3-methoxyphenyl)methyl]ethane-1,2-dicarboxylic acid (S4), a sesamin derivative, on anti-inflammation and antiphotoaging in vitro and in vivo. Human skin fibroblasts were treated with S4 and did not show cytotoxicity under concentrations of 5-50 µM. In addition, S4 also reduced ultraviolet (UV)B-induced intracellular reactive oxygen species (ROS) production. Additionally, S4 inhibited UVB-induced phosphorylation of mitogen-activated protein (MAP) kinases, activator protein-1 (AP-1), and matrix metalloproteinases (MMPs) overexpression. Furthermore, S4 also inhibited UVB-induced Smad7 protein expression and elevated total collagen content in human dermal fibroblasts. For anti-inflammatory activity, S4 inhibited UVB-induced nitric oxide synthase (i-NOS) and cyclooxygenase (COX)-2 protein expression and inhibited nuclear factor-kappaB (NF-ĸB) translocation into the nucleus. S4 ameliorated UVB-induced erythema and wrinkle formation in hairless mice. On histological observation, S4 also ameliorated UVB-induced epidermal hyperplasia and collagen degradation. S4 reduced UVB-induced MMP-1, interleukin (IL)-6, and NF-ĸB expression in the mouse skin. The results indicated that S4 had antiphotoaging and anti-inflammatory activities, protecting skin from premature aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA