Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FEBS J ; 282(12): 2247-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25864722

RESUMEN

The voltage-gated potassium channel Kv1.3 is an important target for the treatment of autoimmune diseases and asthma. Blockade of Kv1.3 by the sea anemone peptide K⁺-channel toxin from Stichodactyla helianthus (ShK) inhibits the proliferation of effector memory T lymphocytes and ameliorates autoimmune diseases in animal models. However, the lack of selectivity of ShK for Kv1.3 over the Kv1.1 subtype has driven a search for Kv1.3-selective analogues. In the present study, we describe N-terminally extended analogues of ShK that contain a negatively-charged Glu, designed to mimic the phosphonate adduct in earlier Kv1.3-selective analogues, and consist entirely of common protein amino acids. Molecular dynamics simulations indicated that a Trp residue at position [-3] of the tetrapeptide extension could form stable interactions with Pro377 of Kv1.3 and best discriminates between Kv1.3 and Kv1.1. This led to the development of ShK with an N-terminal Glu-Trp-Ser-Ser extension ([EWSS]ShK), which inhibits Kv1.3 with an IC50 of 34 pm and is 158-fold selective for Kv1.3 over Kv1.1. In addition, [EWSS]ShK is more than 2900-fold more selective for Kv1.3 over Kv1.2 and KCa3.1 channels. As a highly Kv1.3-selective analogue of ShK based entirely on protein amino acids, which can be produced by recombinant expression, this peptide is a valuable addition to the complement of therapeutic candidates for the treatment of autoimmune diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Venenos de Cnidarios , Diseño de Fármacos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Modelos Moleculares , Proteínas Mutantes/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Sitios de Unión , Línea Celular , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Canal de Potasio Kv1.3/química , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Ratones , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Neurotoxinas/química , Neurotoxinas/genética , Neurotoxinas/metabolismo , Neurotoxinas/farmacología , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anémonas de Mar , Relación Estructura-Actividad
2.
Obesity (Silver Spring) ; 19(12): 2301-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21701568

RESUMEN

Serum amyloid A (SAA) is not only an apolipoprotein, but also a member of the adipokine family with potential to enhance lipolysis. The purpose of this study was to explore how SAA facilitates lipolysis in porcine adipocytes. We found that SAA increased the phosphorylation of perilipin and hormone-sensitive lipase (HSL) after 12-h treatment and decreased perilipin expression after 24-h treatment, and these effects were prevented by extracellular signal-regulated kinase (ERK) or protein kinase A (PKA) inhibitors in primary adipocyte cell culture. SAA treatment decreased HSL and adipose triglyceride lipase (ATGL) expression. SAA treatment also activated ERK and PKA by increasing the phosphorylation of these kinases. Moreover, SAA significantly increased porcine adipocyte glycerol release and lipase activity, which was inhibited by either ERK (PD98059) or PKA (H89) inhibitors, suggesting that ERK and PKA were involved in mediating SAA enhanced lipolysis. SAA downregulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) mRNA, which was reversed by the ERK inhibitor. We performed a porcine perilipin promoter assay in differentiated 3T3-L1 adipocytes and found that SAA reduced the porcine perilipin promoter specifically through the function of its PPAR response element (PPRE), and this effect was reversed by the ERK inhibitor. These findings demonstrate that SAA-induced lipolysis is a result of downregulation of perilipin and activation of HSL via ERK/PPARγ and PKA signaling pathways. The finding could lead to developing new strategies for reducing human obesity.


Asunto(s)
Adipocitos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Lipólisis/fisiología , Fosfoproteínas/metabolismo , Proteína Amiloide A Sérica/metabolismo , Esterol Esterasa/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Proteínas Portadoras/genética , Regulación hacia Abajo , Glicerol/metabolismo , Lipasa/metabolismo , Lipólisis/efectos de los fármacos , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Perilipina-1 , Fosfoproteínas/genética , Fosforilación , ARN Mensajero/metabolismo , Elementos de Respuesta/fisiología , Proteína Amiloide A Sérica/farmacología , Transducción de Señal , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA