Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 95(29): 11113-11123, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428145

RESUMEN

Organophosphate pesticides are used in agriculture due to their high effectiveness and low persistence in eradicating insects and pests. However, conventional detection methods encounter the limitation of undesired detection specificity. Thus, screening phosphonate-type organophosphate pesticides (OOPs) from their analogues, phosphorothioate organophosphate pesticides (SOPs), remains a challenge. Here, we reported a d-penicillamine@Ag/Cu nanocluster (DPA@Ag/Cu NCs)-based fluorescence assay to screen OOPs from 21 kinds of organophosphate pesticides, which can be used for logic sensing and information encryption. Acetylthiocholine chloride was enzymatically split by acetylcholinesterase (AChE) to produce thiocholine, which reduced the fluorescence of DPA@Ag/Cu NCs due to the transmission of electrons from DPA@Ag/Cu NCs donor to the thiol group acceptor. Impressively, OOPs acted as an AChE inhibitor and retained the high fluorescence of DPA@Ag/Cu NCs due to the stronger positive electricity of the phosphorus atom. Conversely, SOPs possessed weak toxicity to AChE, which led to low fluorescence intensity. By setting 21 kinds of organophosphate pesticides as the inputs and the fluorescence of the resulting products as the outputs, DPA@Ag/Cu NCs could serve as a fluorescent nanoneuron to construct Boolean logic tree and complex logic circuit for molecular computing. As a proof of concept, by converting the selective response patterns of DPA@Ag/Cu NCs into binary strings, molecular crypto-steganography for encoding, storing, and concealing information was successfully achieved. This study is expected to advance the progress and practical application of nanoclusters in the area of logic detection and information security while also enhancing the relationship between molecular sensors and the world of information.


Asunto(s)
Antígenos de Grupos Sanguíneos , Insecticidas , Nanopartículas del Metal , Organofosfonatos , Plaguicidas , Penicilamina , Acetilcolinesterasa , Compuestos Organofosforados , Colorantes , Organofosfatos , Lógica , Cobre , Plaguicidas/análisis
2.
Front Mol Neurosci ; 8: 52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441515

RESUMEN

Postoperative cognitive dysfunction (POCD) is a recognized clinical entity characterized with cognitive deficits after anesthesia and surgery, especially in aged patients. Previous studies have shown that histone acetylation plays a key role in hippocampal synaptic plasticity and memory formation. However, its role in POCD remains to be determined. Here, we show that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, attenuates POCD in aging Mice. After exposed to the laparotomy, a surgical procedure involving an incision into abdominal walls to examine the abdominal organs, 16- but not 3-month old male C57BL/6 mice developed obvious cognitive impairments in the test of long-term contextual fear conditioning. Intracerebroventricular (i.c.v.) injection of SAHA at the dose of (20 µg/2 µl) 3 h before and daily after the laparotomy restored the laparotomy-induced reduction of hippocampal acetyl-H3 and acetyl-H4 levels and significantly attenuated the hippocampus-dependent long-term memory (LTM) impairments in 16-month old mice. SAHA also reduced the expression of cleaved caspase-3, inducible nitric oxide synthase (iNOS) and N-methyl-D-aspartate (NMDA) receptor-calcium/calmodulin dependent kinase II (CaMKII) pathway, and increased the expression of brain-derived neurotrophic factor (BDNF), synapsin 1, and postsynaptic density 95 (PSD95). Taken together, our data suggest that the decrease of histone acetylation contributes to POCD and may serve as a target to improve the neurological outcome of POCD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA