RESUMEN
Deep brain stimulation (DBS) may improve disabling tics in severely affected medication and behaviorally resistant Tourette syndrome (TS). Here we review all reported cases of TS DBS and provide updated recommendations for selection, assessment, and management of potential TS DBS cases based on the literature and implantation experience. Candidates should have a Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM V) diagnosis of TS with severe motor and vocal tics, which despite exhaustive medical and behavioral treatment trials result in significant impairment. Deep brain stimulation should be offered to patients only by experienced DBS centers after evaluation by a multidisciplinary team. Rigorous preoperative and postoperative outcome measures of tics and associated comorbidities should be used. Tics and comorbid neuropsychiatric conditions should be optimally treated per current expert standards, and tics should be the major cause of disability. Psychogenic tics, embellishment, and malingering should be recognized and addressed. We have removed the previously suggested 25-year-old age limit, with the specification that a multidisciplinary team approach for screening is employed. A local ethics committee or institutional review board should be consulted for consideration of cases involving persons younger than 18 years of age, as well as in cases with urgent indications. Tourette syndrome patients represent a unique and complex population, and studies reveal a higher risk for post-DBS complications. Successes and failures have been reported for multiple brain targets; however, the optimal surgical approach remains unknown. Tourette syndrome DBS, though still evolving, is a promising approach for a subset of medication refractory and severely affected patients.
Asunto(s)
Estimulación Encefálica Profunda/métodos , Guías como Asunto , Síndrome de Tourette/terapia , Estimulación Encefálica Profunda/tendencias , Humanos , Síndrome de Tourette/diagnósticoRESUMEN
BACKGROUND: Focused ultrasound thalamotomy (FUS-T) was recently approved for the treatment of refractory essential tremor (ET). Despite its noninvasive approach, FUS-T reinitiated concerns about the adverse effects and long-term efficacy after lesioning. OBJECTIVE: To prospectively assess the outcomes of FUS-T in 10 ET patients using tractography-based targeting of the ventral intermediate nucleus (VIM). METHODS: VIM was identified at the intercommissural plane based on its neighboring tracts: the pyramidal tract and medial lemniscus. FUS-T was performed at the center of tractography-defined VIM. Tremor outcomes, at baseline and 3 mo, were assessed independently by the Tremor Research Group. We analyzed targeting coordinates, clinical outcomes, and adverse events. The FUS-T lesion location was analyzed in relation to unbiased thalamic parcellation using probabilisitic tractography. Quantitative diffusion-weighted imaging changes were also studied in fiber tracts of interest. RESULTS: The tractography coordinates were more anterior than the standard. Intraoperatively, therapeutic sonications at the tractography target improved tremor (>50% improvement) without motor or sensory side effects. Sustained improvement in tremor was observed at 3 mo (tremor score: 18.3 ± 6.9 vs 8.1 ± 4.4, P = .001). No motor weakness and sensory deficits after FUS-T were observed during 6-mo follow-up. Ataxia was observed in 3 patients. FUS-T lesions overlapped with the VIM parcellated with probablisitic tractography. Significant microstructural changes were observed in the white matter connecting VIM with cerebellum and motor cortex. CONCLUSION: This is the first report of prospective VIM targeting with tractography for FUS-T. These results suggest that tractography-guided targeting is safe and has satisfactory short-term clinical outcomes.
Asunto(s)
Imagen de Difusión Tensora/métodos , Temblor Esencial , Tálamo , Terapia por Ultrasonido , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Humanos , Seguridad del Paciente , Estudios Prospectivos , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Terapia por Ultrasonido/efectos adversos , Terapia por Ultrasonido/métodosRESUMEN
Tourette Syndrome (TS) is a neuropsychiatric disease characterized by a combination of motor and vocal tics. Deep brain stimulation (DBS), already widely utilized for Parkinson's disease and other movement disorders, is an emerging therapy for select and severe cases of TS that are resistant to medication and behavioral therapy. Over the last two decades, DBS has been used experimentally to manage severe TS cases. The results of case reports and small case series have been variable but in general positive. The reported interventions have, however, been variable, and there remain non-standardized selection criteria, various brain targets, differences in hardware, as well as variability in the programming parameters utilized. DBS centers perform only a handful of TS DBS cases each year, making large-scale outcomes difficult to study and to interpret. These limitations, coupled with the variable effect of surgery, and the overall small numbers of TS patients with DBS worldwide, have delayed regulatory agency approval (e.g., FDA and equivalent agencies around the world). The Tourette Association of America, in response to the worldwide need for a more organized and collaborative effort, launched an international TS DBS registry and database. The main goal of the project has been to share data, uncover best practices, improve outcomes, and to provide critical information to regulatory agencies. The international registry and database has improved the communication and collaboration among TS DBS centers worldwide. In this paper we will review some of the key operation details for the international TS DBS database and registry.