Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 27(3): 109277, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38455971

RESUMEN

Tissue-resident memory T cells (TRM) are a specialized T cell population residing in peripheral tissues. The presence and potential impact of TRM in the tumor immune microenvironment (TIME) remain to be elucidated. Here, we systematically investigated the relationship between TRM and melanoma TIME based on multiple clinical single-cell RNA-seq datasets and developed signatures indicative of TRM infiltration. TRM infiltration is associated with longer overall survival and abundance of T cells, NK cells, M1 macrophages, and memory B cells in the TIME. A 22-gene TRM-derived risk score was further developed to effectively classify patients into low- and high-risk categories, distinguishing overall survival and immune activation, particularly in T cell-mediated responses. Altogether, our analysis suggests that TRM abundance is associated with melanoma TIME activation and patient survival, and the TRM-based machine learning model can potentially predict prognosis in melanoma patients.

2.
Antib Ther ; 7(2): 177-186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38933532

RESUMEN

Cancer immunotherapy represents a paradigm shift in oncology, offering a superior anti-tumor efficacy and the potential for durable remission. The success of personalized vaccines and cell therapies hinges on the identification of immunogenic epitopes capable of eliciting an effective immune response. Current limitations in the availability of immunogenic epitopes restrict the broader application of such therapies. A critical criterion for serving as potential cancer antigens is their ability to stably bind to the major histocompatibility complex (MHC) for presentation on the surface of tumor cells. To address this, we have developed a comprehensive database of MHC epitopes, experimentally validated for their MHC binding and cell surface presentation. Our database catalogs 451 065 MHC peptide epitopes, each with experimental evidence for MHC binding, along with detailed information on human leukocyte antigen allele specificity, source peptides, and references to original studies. We also provide the grand average of hydropathy scores and predicted immunogenicity for the epitopes. The database (MHCepitopes) has been made available on the web and can be accessed at https://github.com/jcm1201/MHCepitopes.git. By consolidating empirical data from various sources coupled with calculated immunogenicity and hydropathy values, our database offers a robust resource for selecting actionable tumor antigens and advancing the design of antigen-specific cancer immunotherapies. It streamlines the process of identifying promising immunotherapeutic targets, potentially expediting the development of effective antigen-based cancer immunotherapies.

3.
Front Immunol ; 15: 1416751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040095

RESUMEN

Tissue-resident memory T cells (TRM) are a specialized subset of long-lived memory T cells that reside in peripheral tissues. However, the impact of TRM-related immunosurveillance on the tumor-immune microenvironment (TIME) and tumor progression across various non-small-cell lung cancer (NSCLC) patient populations is yet to be elucidated. Our comprehensive analysis of multiple independent single-cell and bulk RNA-seq datasets of patient NSCLC samples generated reliable, unique TRM signatures, through which we inferred the abundance of TRM in NSCLC. We discovered that TRM abundance is consistently positively correlated with CD4+ T helper 1 cells, M1 macrophages, and resting dendritic cells in the TIME. In addition, TRM signatures are strongly associated with immune checkpoint and stimulatory genes and the prognosis of NSCLC patients. A TRM-based machine learning model to predict patient survival was validated and an 18-gene risk score was further developed to effectively stratify patients into low-risk and high-risk categories, wherein patients with high-risk scores had significantly lower overall survival than patients with low-risk. The prognostic value of the risk score was independently validated by the Cancer Genome Atlas Program (TCGA) dataset and multiple independent NSCLC patient datasets. Notably, low-risk NSCLC patients with higher TRM infiltration exhibited enhanced T-cell immunity, nature killer cell activation, and other TIME immune responses related pathways, indicating a more active immune profile benefitting from immunotherapy. However, the TRM signature revealed low TRM abundance and a lack of prognostic association among lung squamous cell carcinoma patients in contrast to adenocarcinoma, indicating that the two NSCLC subtypes are driven by distinct TIMEs. Altogether, this study provides valuable insights into the complex interactions between TRM and TIME and their impact on NSCLC patient prognosis. The development of a simplified 18-gene risk score provides a practical prognostic marker for risk stratification.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células T de Memoria , Microambiente Tumoral , Humanos , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pronóstico , Células T de Memoria/inmunología , Memoria Inmunológica , Linfocitos Infiltrantes de Tumor/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA