Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35502748

RESUMEN

Adventitious roots (ARs) are an important type of plant root and display high phenotypic plasticity in response to different environmental stimuli. It is known that photoreceptors inhibit darkness-induced hypocotyl adventitious root (HAR) formation by directly stabilizing Aux/IAA proteins. In this study, we further report that phytochrome-interacting factors (PIFs) plays a central role in HAR initiation by simultaneously inducing the expression of genes involved in auxin biosynthesis, auxin transport and the transcriptional control of root primordium initiation. We found that, on the basis of their activity downstream of phytochrome, PIFs are required for darkness-induced HAR formation. Specifically, PIFs directly bind to the promoters of some genes involved in root formation, including auxin biosynthesis genes YUCCA2 (YUC2) and YUC6, the auxin influx carrier genes AUX1 and LAX3, and the transcription factors WOX5/7 and LBD16/29, to activate their expression. These findings reveal a previously uncharacterized transcriptional regulatory network underlying HAR formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Fitocromo/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
2.
EMBO Rep ; 24(1): e55542, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36394374

RESUMEN

The Zn content in cereal seeds is an important trait for crop production as well as for human health. However, little is known about how Zn is loaded to plant seeds. Here, through a genome-wide association study (GWAS), we identify the Zn-NA (nicotianamine) transporter gene ZmYSL2 that is responsible for loading Zn to maize kernels. High promoter sequence variation in ZmYSL2 most likely drives the natural variation in Zn concentrations in maize kernels. ZmYSL2 is specifically localized on the plasma membrane facing the maternal tissue of the basal endosperm transfer cell layer (BETL) and functions in loading Zn-NA into the BETL. Overexpression of ZmYSL2 increases the Zn concentration in the kernels by 31.6%, which achieves the goal of Zn biofortification of maize. These findings resolve the mystery underlying the loading of Zn into plant seeds, providing an efficient strategy for breeding or engineering maize varieties with enriched Zn nutrition.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Humanos , Zea mays/genética , Zea mays/metabolismo , Zinc/metabolismo , Fitomejoramiento , Semillas/genética , Proteínas de Transporte de Membrana/genética
3.
J Integr Plant Biol ; 66(3): 394-423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38329193

RESUMEN

Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.


Asunto(s)
Estrés Fisiológico , Agua , Presión Osmótica/fisiología , Agua/metabolismo , Membrana Celular/metabolismo , Productos Agrícolas/metabolismo , Sequías
4.
Plant J ; 112(6): 1350-1363, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36321185

RESUMEN

Nutrient homeostasis is essential for plant growth and reproduction. Plants, therefore, have evolved tightly regulated mechanisms for the uptake, translocation, distribution, and storage of mineral nutrients. Considering that inorganic nutrient transport relies on membrane-based transporters and channels, vesicle trafficking, one of the fundamental cell biological processes, has become a hotspot of plant nutrition studies. In this review, we summarize recent advances in the study of how vesicle trafficking regulates nutrient homeostasis to contribute to the adaptation of plants to heterogeneous environments. We also discuss new perspectives on future studies, which may inspire researchers to investigate new approaches to improve the human diet and health by changing the nutrient quality of crops.


Asunto(s)
Proteínas de Transporte de Membrana , Plantas , Humanos , Transporte Biológico , Homeostasis , Plantas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Adaptación Fisiológica , Raíces de Plantas/metabolismo
5.
Plant J ; 105(6): 1689-1702, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33354819

RESUMEN

Adventitious roots (ARs) are an important root type for plants and display a high phenotypic plasticity in response to different environmental stimuli. Previous studies found that dark-light transition can trigger AR formation from the hypocotyl of etiolated Arabidopsis thaliana, which was used as a model for the identification of regulators of AR biogenesis. However, the central regulatory machinery for darkness-induced hypocotyl AR (HAR) remains elusive. Here, we report that photoreceptors suppress HAR biogenesis through regulating the molecular module essential for lateral roots. We found that hypocotyls embedded in soil or in continuous darkness are able to develop HARs, wherein photoreceptors act as negative regulators. Distinct from wound-induced ARs that require WOX11 and WOX12, darkness-induced HARs are fully dependent on ARF7, ARF19, WOX5/7, and LBD16. Further studies established that PHYB interacts with IAA14, ARF7, and ARF9. The interactions stabilize IAA14 and inhibit the transcriptional activities of ARF7 and ARF19 and thus suppress biogenesis of darkness-induced HARs. This finding not only revealed the central machinery controlling HAR biogenesis but also illustrated that AR formation could be initiated by multiple pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Fitocromo B/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oscuridad , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Factores de Transcripción/genética
6.
New Phytol ; 236(5): 1655-1660, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36093736

RESUMEN

Iron (Fe) homeostasis is essential for both plant development and human nutrition. The maintenance of Fe homeostasis involves a complex network in which Fe signaling nodes and circuits coordinate tightly Fe transporters, ferric reductases, H+ -ATPases, low-molecular-mass metal chelators, and transporters of chelators and Fe-chelate complexes. Early-stage studies have revealed different strategies for Fe homeostasis between graminaceous and nongraminaceous plants. Recent progress has refreshed our understanding of previous knowledge, especially on the uptake, phloem transport and systemic signaling of Fe. This review attempts to summarize recent exciting and potentially influential studies on the various routes of Fe uptake and distribution in plants, focusing on breakthroughs that have changed our understanding of plant Fe nutrition.


Asunto(s)
Hierro , Plantas , Transporte Biológico , Quelantes , Regulación de la Expresión Génica de las Plantas , Homeostasis , Hierro/metabolismo , Plantas/metabolismo , ATPasas de Translocación de Protón
7.
New Phytol ; 235(4): 1486-1500, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35510797

RESUMEN

Protein sorting is an essential biological process in all organisms. Trafficking membrane proteins generally relies on the sorting machinery of the Golgi apparatus. However, many proteins have been found to be delivered to target locations via Golgi-independent pathways, but the mechanisms underlying this delivery system remain unknown. Here, we report that Sec24C mediates the direct secretory trafficking of the phytochelatin transporters ABCC1 and ABCC2 from the endoplasmic reticulum (ER) to prevacuolar compartments (PVCs) in Arabidopsis thaliana. Genetic analysis showed that the sec24c mutants are hypersensitive to cadmium (Cd) and arsenic (As) treatments due to mislocalisation of ABCC1 and ABCC2, which results in defects in the vacuole compartmentalisation of the toxic metals. Furthermore, we found that Sec24C recognises ABCC1 and ABCC2 through direct interactions to mediate their exit from the ER to PVCs, which is independent of brefeldin A-sensitive post-Golgi trafficking pathway. These findings expand our understanding of Golgi-independent trafficking, which also provide key insights regarding the mechanism of tonoplast protein sorting and open a new perspective on the function of Sec24 proteins.


Asunto(s)
Arabidopsis , Fenómenos Biológicos , Arabidopsis/genética , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(38): 18893-18899, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31484765

RESUMEN

Aquatic plants have to adapt to the environments distinct from where land plants grow. A critical aspect of adaptation is the dynamics of sequence repeats, not resolved in older sequencing platforms due to incomplete and fragmented genome assemblies from short reads. Therefore, we used PacBio long-read sequencing of the Spirodela polyrhiza genome, reaching a 44-fold increase of contiguity with an N50 (a median of contig lengths) of 831 kb and filling 95.4% of gaps left from the previous version. Reconstruction of repeat regions indicates that sequentially nested long terminal repeat (LTR) retrotranspositions occur early in monocot evolution, featured with both prokaryote-like gene-rich regions and eukaryotic repeat islands. Protein-coding genes are reduced to 18,708 gene models supported by 492,435 high-quality full-length PacBio complementary DNA (cDNA) sequences. Different from land plants, the primitive architecture of Spirodela's adventitious roots and lack of lateral roots and root hairs are consistent with dispensable functions of nutrient absorption. Disease-resistant genes encoding antimicrobial peptides and dirigent proteins are expanded by tandem duplications. Remarkably, disease-resistant genes are not only amplified, but also highly expressed, consistent with low levels of 24-nucleotide (nt) small interfering RNA (siRNA) that silence the immune system of land plants, thereby protecting Spirodela against a wide spectrum of pathogens and pests. The long-read sequence information not only sheds light on plant evolution and adaptation to the environment, but also facilitates applications in bioenergy and phytoremediation.


Asunto(s)
Adaptación Fisiológica/genética , Araceae/genética , Genoma de Planta/genética , Organismos Acuáticos/genética , Organismos Acuáticos/fisiología , Araceae/anatomía & histología , Araceae/fisiología , ADN de Plantas/genética , Resistencia a la Enfermedad/genética , Evolución Molecular , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Análisis de Secuencia de ADN , Secuencias Repetidas en Tándem
9.
PLoS Biol ; 15(12): e2002978, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29284002

RESUMEN

Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Glicósido Hidrolasas/fisiología , Transporte Iónico/genética , Proteínas de Transporte de Membrana/fisiología , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Clonación Molecular , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Transporte de Proteínas , Simportadores/metabolismo
10.
PLoS Genet ; 13(10): e1007086, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29084222

RESUMEN

Arabidopsis thaliana high-affinity potassium transporter 1 (AtHKT1) limits the root-to-shoot sodium transportation and is believed to be essential for salt tolerance in A. thaliana. Nevertheless, natural accessions with 'weak allele' of AtHKT1, e.g. Tsu-1, are mainly distributed in saline areas and are more tolerant to salinity. These findings challenge the role of AtHKT1 in salt tolerance and call into question the involvement of AtHKT1 in salinity adaptation in A. thaliana. Here, we report that AtHKT1 indeed drives natural variation in the salt tolerance of A. thaliana and the coastal AtHKT1, so-called weak allele, is actually hyper-functional in reducing flowers sodium content upon salt stress. Our data showed that AtHKT1 positively contributes to saline adaptation in a linear manner. Forward and reverse genetics analysis established that the single AtHKT1 locus is responsible for the variation in the salinity adaptation between Col-0 and Tsu-1. Reciprocal grafting experiments revealed that shoot AtHKT1 determines the salt tolerance of Tsu-1, whereas root AtHKT1 primarily drives the salt tolerance of Col-0. Furthermore, evidence indicated that Tsu-1 AtHKT1 is highly expressed in stems and is more effective compared to Col-0 AtHKT1 at limiting sodium flow to the flowers. Such efficient retrieval of sodium to the reproductive organ endows Tsu-1 with stronger fertility compared to Col-0 upon salt stress, thus improving Tsu-1 adaptation to a coastal environment. To conclude, our data not only confirm the role of AtHKT1 in saline adaptation, but also sheds light on our understanding of the salt tolerance mechanisms in plants.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Flores/genética , Tolerancia a la Sal/genética , Sodio/metabolismo , Simportadores/genética , Alelos , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Salinidad , Cloruro de Sodio/metabolismo
11.
J Exp Bot ; 70(20): 5909-5918, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31328224

RESUMEN

Cadmium (Cd) is a highly toxic heavy metal in nature, which causes severe damage to plant growth. The molecular mechanisms for Cd detoxification are poorly understood. Here, we report that a G-type ATP-binding cassette transporter, OsABCG36, is involved in Cd tolerance in rice. OsABCG36 was expressed in both roots and shoots at a low level, but expression in the roots rather than the shoots was greatly up-regulated by a short exposure to Cd. A spatial expression analysis showed that Cd-induced expression of OsABCG36 was found in both the root tip and the mature root region. Transient expression of OsABCG36 in rice protoplast cells showed that it was localized to the plasma membrane. Immunostaining showed that OsABCG36 was localized in all root cells except the epidermal cells. Knockout of OsABCG36 resulted in increased Cd accumulation in root cell sap and enhanced Cd sensitivity, but did not affect tolerance to other metals including Al, Zn, Cu, and Pb. The concentration of Cd in the shoots was similar between the knockout lines and wild-type rice. Heterologous expression of OsABCG36 in yeast showed an efflux activity for Cd, but not for Zn. Taken together, our results indicate that OsABCG36 is not involved in Cd accumulation in the shoots, but is required for Cd tolerance by exporting Cd or Cd conjugates from the root cells in rice.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Cadmio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
12.
PLoS Genet ; 12(9): e1006298, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27622452

RESUMEN

Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S-adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over-accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigénesis Genética , Homeostasis , Proteínas Nucleares/genética , S-Adenosilmetionina/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Metilación de ADN , Glutatión/metabolismo , Proteínas Nucleares/metabolismo
13.
Plant Physiol ; 172(3): 1708-1719, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27702843

RESUMEN

Rice is a major dietary source of the toxic metalloid arsenic (As). Reducing its accumulation in rice (Oryza sativa) grain is of critical importance to food safety. Rice roots take up arsenate and arsenite depending on the prevailing soil conditions. The first step of arsenate detoxification is its reduction to arsenite, but the enzyme(s) catalyzing this reaction in rice remains unknown. Here, we identify OsHAC1;1 and OsHAC1;2 as arsenate reductases in rice. OsHAC1;1 and OsHAC1;2 are able to complement an Escherichia coli mutant lacking the endogenous arsenate reductase and to reduce arsenate to arsenite. OsHAC1:1 and OsHAC1;2 are predominantly expressed in roots, with OsHAC1;1 being abundant in the epidermis, root hairs, and pericycle cells while OsHAC1;2 is abundant in the epidermis, outer layers of cortex, and endodermis cells. Expression of the two genes was induced by arsenate exposure. Knocking out OsHAC1;1 or OsHAC1;2 decreased the reduction of arsenate to arsenite in roots, reducing arsenite efflux to the external medium. Loss of arsenite efflux was also associated with increased As accumulation in shoots. Greater effects were observed in a double mutant of the two genes. In contrast, overexpression of either OsHAC1;1 or OsHAC1;2 increased arsenite efflux, reduced As accumulation, and enhanced arsenate tolerance. When grown under aerobic soil conditions, overexpression of either OsHAC1;1 or OsHAC1;2 also decreased As accumulation in rice grain, whereas grain As increased in the knockout mutants. We conclude that OsHAC1;1 and OsHAC1;2 are arsenate reductases that play an important role in restricting As accumulation in rice shoots and grain.


Asunto(s)
Arseniato Reductasas/metabolismo , Arsénico/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Arsénico/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Especiación Genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/metabolismo , Suelo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Xilema/efectos de los fármacos , Xilema/metabolismo
14.
PLoS Biol ; 12(12): e1002009, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25464340

RESUMEN

Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arseniato Reductasas/metabolismo , Arsénico/metabolismo , Estudio de Asociación del Genoma Completo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Arseniato Reductasas/genética , Epistasis Genética , Genes de Plantas , Sitios Genéticos , Modelos Biológicos , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de Proteína
15.
Genes Dev ; 23(15): 1805-17, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19651988

RESUMEN

Abiotic stresses, such as drought and salinity, lead to crop growth damage and a decrease in crop yields. Stomata control CO(2) uptake and optimize water use efficiency, thereby playing crucial roles in abiotic stress tolerance. Hydrogen peroxide (H(2)O(2)) is an important signal molecule that induces stomatal closure. However, the molecular pathway that regulates the H(2)O(2) level in guard cells remains largely unknown. Here, we clone and characterize DST (drought and salt tolerance)-a previously unknown zinc finger transcription factor that negatively regulates stomatal closure by direct modulation of genes related to H(2)O(2) homeostasis-and identify a novel pathway for the signal transduction of DST-mediated H(2)O(2)-induced stomatal closure. Loss of DST function increases stomatal closure and reduces stomatal density, consequently resulting in enhanced drought and salt tolerance in rice. These findings provide an interesting insight into the mechanism of stomata-regulated abiotic stress tolerance, and an important genetic engineering approach for improving abiotic stress tolerance in crops.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Oryza/fisiología , Proteínas de Plantas/metabolismo , Estomas de Plantas/fisiología , Tolerancia a la Sal/fisiología , Dedos de Zinc/fisiología , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Peróxido de Hidrógeno , Datos de Secuencia Molecular , Mutación , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Alineación de Secuencia , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
16.
Plant Physiol ; 166(3): 1593-608, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25245030

RESUMEN

Natural variation allows the investigation of both the fundamental functions of genes and their role in local adaptation. As one of the essential macronutrients, sulfur is vital for plant growth and development and also for crop yield and quality. Selenium and sulfur are assimilated by the same process, and although plants do not require selenium, plant-based selenium is an important source of this essential element for animals. Here, we report the use of linkage mapping in synthetic F2 populations and complementation to investigate the genetic architecture of variation in total leaf sulfur and selenium concentrations in a diverse set of Arabidopsis (Arabidopsis thaliana) accessions. We identify in accessions collected from Sweden and the Czech Republic two variants of the enzyme ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE2 (APR2) with strongly diminished catalytic capacity. APR2 is a key enzyme in both sulfate and selenate reduction, and its reduced activity in the loss-of-function allele apr2-1 and the two Arabidopsis accessions Hodonín and Shahdara leads to a lowering of sulfur flux from sulfate into the reduced sulfur compounds, cysteine and glutathione, and into proteins, concomitant with an increase in the accumulation of sulfate in leaves. We conclude from our observation, and the previously identified weak allele of APR2 from the Shahdara accession collected in Tadjikistan, that the catalytic capacity of APR2 varies by 4 orders of magnitude across the Arabidopsis species range, driving significant differences in sulfur and selenium metabolism. The selective benefit, if any, of this large variation remains to be explored.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Selenio/metabolismo , Azufre/metabolismo , Sustitución de Aminoácidos , Proteínas de Arabidopsis/genética , República Checa , Frecuencia de los Genes , Variación Genética , Estudio de Asociación del Genoma Completo , Isoenzimas/genética , Isoenzimas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Fenotipo , Hojas de la Planta/metabolismo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Sulfatos/metabolismo , Suecia
17.
PLoS Genet ; 8(9): e1002923, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22969436

RESUMEN

Understanding the mechanism of cadmium (Cd) accumulation in plants is important to help reduce its potential toxicity to both plants and humans through dietary and environmental exposure. Here, we report on a study to uncover the genetic basis underlying natural variation in Cd accumulation in a world-wide collection of 349 wild collected Arabidopsis thaliana accessions. We identified a 4-fold variation (0.5-2 µg Cd g(-1) dry weight) in leaf Cd accumulation when these accessions were grown in a controlled common garden. By combining genome-wide association mapping, linkage mapping in an experimental F2 population, and transgenic complementation, we reveal that HMA3 is the sole major locus responsible for the variation in leaf Cd accumulation we observe in this diverse population of A. thaliana accessions. Analysis of the predicted amino acid sequence of HMA3 from 149 A. thaliana accessions reveals the existence of 10 major natural protein haplotypes. Association of these haplotypes with leaf Cd accumulation and genetics complementation experiments indicate that 5 of these haplotypes are active and 5 are inactive, and that elevated leaf Cd accumulation is associated with the reduced function of HMA3 caused by a nonsense mutation and polymorphisms that change two specific amino acids.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cadmio , Estudio de Asociación del Genoma Completo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
18.
Plant J ; 74(1): 37-47, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23279701

RESUMEN

The Arabidopsis ATP-binding cassette B19 (ABCB19, P-glycoprotein19) transporter functions coordinately with ABCB1 and PIN1 to motivate long-distance transport of the phytohormone auxin from the shoot to root apex. ABCB19 exhibits a predominantly apolar plasma membrane (PM) localization and stabilizes PIN1 when the two proteins co-occur. Biochemical evidence associates ABCB19 and PIN1 with sterol- and sphingolipid-enriched PM fractions. Mutants deficient in structural sterols and sphingolipids exhibit similarity to abcb19 mutants. Sphingolipid-defective tsc10a mutants and, to a lesser extent, sterol-deficient cvp1 mutants phenocopy abcb19 mutants. Live imaging studies show that sterols function in trafficking of ABCB19 from the trans-Golgi network to the PM. Pharmacological or genetic sphingolipid depletion has an even greater impact on ABCB19 PM targeting and interferes with ABCB19 trafficking from the Golgi. Our results also show that sphingolipids function in trafficking associated with compartments marked by the VTI12 syntaxin, and that ABCB19 mediates PIN1 stability in sphingolipid-containing membranes. The TWD1/FKBP42 co-chaperone immunophilin is required for exit of ABCB19 from the ER, but ABCB19 interactions with sterols, sphingolipids and PIN1 are spatially distinct from FKBP42 activity at the ER. The accessibility of this system to direct live imaging and biochemical analysis makes it ideal for the modeling and analysis of sterol and sphingolipid regulation of ABCB/P-glycoprotein transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Esfingolípidos/metabolismo , Esteroles/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/metabolismo , Mutación , Transporte de Proteínas , Proteínas de Unión a Tacrolimus/metabolismo , Red trans-Golgi/metabolismo
19.
Plant Cell ; 23(3): 1061-81, 2011 03.
Artículo en Inglés | MEDLINE | ID: mdl-21421810

RESUMEN

Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrosphinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrosphinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10Δ mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10A and tsc10B mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Hojas de la Planta/química , Raíces de Plantas/metabolismo , Esfingolípidos/biosíntesis , Oxidorreductasas de Alcohol/genética , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Supervivencia Celular , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Homeostasis , Hierro/metabolismo , Lípidos/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Oxidorreductasas/metabolismo , Polimorfismo Genético , Potasio/metabolismo , Homología de Secuencia de Aminoácido , Sodio/metabolismo , Levaduras/genética , Levaduras/metabolismo
20.
Nat Genet ; 37(10): 1141-6, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16155566

RESUMEN

Many important agronomic traits in crop plants, including stress tolerance, are complex traits controlled by quantitative trait loci (QTLs). Isolation of these QTLs holds great promise to improve world agriculture but is a challenging task. We previously mapped a rice QTL, SKC1, that maintained K(+) homeostasis in the salt-tolerant variety under salt stress, consistent with the earlier finding that K(+) homeostasis is important in salt tolerance. To understand the molecular basis of this QTL, we isolated the SKC1 gene by map-based cloning and found that it encoded a member of HKT-type transporters. SKC1 is preferentially expressed in the parenchyma cells surrounding the xylem vessels. Voltage-clamp analysis showed that SKC1 protein functions as a Na(+)-selective transporter. Physiological analysis suggested that SKC1 is involved in regulating K(+)/Na(+) homeostasis under salt stress, providing a potential tool for improving salt tolerance in crops.


Asunto(s)
Oryza/metabolismo , Sitios de Carácter Cuantitativo , Canales de Sodio/genética , Canales de Sodio/fisiología , Sodio/metabolismo , Secuencia de Bases , Clonación Molecular , Prueba de Complementación Genética , Transporte Iónico/genética , Datos de Secuencia Molecular , Oryza/genética , Potasio/análisis , Canales de Potasio/genética , Canales de Potasio/fisiología , Sales (Química)/metabolismo , Sodio/análisis , Cloruro de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA