Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 5, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172684

RESUMEN

BACKGROUND: Harmonia axyridis is an effective natural enemy insect to a variety of phloem-sucking pests and Lepidopteran larvae, such as aphids, scabies, and phylloxera, while its industrial production is limited due to unmature artificial diet. Insect intestinal microbiota affect host development and reproduction. The aim of this study is to understand intestinal microbiota composition of H. axyridis and screen effective probiotics on artificial diet. Considering the role of the components and composition of the diet on the structure and composition of the intestinal microbiome, four kinds of diets were set up: (1) aphid; (2) basic diet; (3) basic diet + glucose; (4) basic diet + trehalose. The gut microbiota of H. axyridis was detected after feeding on different diets. RESULTS: Results showed that the gut microbiota between artificial diet group and aphid groups were far apart, while the basic and glucose groups were clearly clustered. Besides, the glucose group and trehalose group had one unique phylum, Cryptophyta and Candidatus Saccharibacteria, respectively. The highest abundance of Proteobacteria was found in the aphid diet. The highest abundance of Firmicutes was found in the basic diet. However, the addition of glucose or trehalose alleviated the change. In addition, the relative abundance of Enterobacter, Klebsiella, Enterobacteriaceae_unclassified, Enterobacteriales_unclassified and Serratia in the aphid group was higher than other groups. Moreover, the function of gut genes in each group also showed clear differences. CONCLUSION: These results have offered a strong link between artificial diets and gut microbes, and also have provided a theoretical basis for the screening of synergistic probiotics in artificial diet.


Asunto(s)
Áfidos , Escarabajos , Microbioma Gastrointestinal , Animales , Trehalosa , Insectos , Dieta , Enterobacter , Glucosa
2.
Environ Sci Pollut Res Int ; 31(13): 19409-19422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358633

RESUMEN

The aging process can affect the physical and chemical properties as well as adsorption capacity of biochar. This study focuses on the heavy metal cadmium (Cd) as the research object, and artificially ages biochar prepared from rice straw and corn straw through accelerated freeze-thaw cycles, alternating dry wet cycles, and ultraviolet light treatment, in order to evaluate the effects of different aging conditions on the physical and chemical properties of the two different types of biochar and on their adsorption capacities for Cd. After aging, the pH of rice and corn biochar decreased to varying degrees, respectively. The surface structure was ruptured, the average pore diameter was decreased, and the specific surface area was increased by 27.3%, 21.9%, and 9.8% (rice) and 95.4%, 27.7%, and 13.4% (corn). Ultraviolet light aging has the most significant impact on the elemental content of biochar, and the C content was decreased by 12.4% (rice) and 9.3% (corn). The O content was increased by 11.2% (rice) and 44.1% (corn), and the numbers of O/C, H/C, (O + N)/C, and oxygen-containing functional groups were increased. These results demonstrate that the aging process reduces the degree of aromatization of biochar, while enhancing its polarity and Cd adsorption capacity. Rice straw biochar (RSB) has a greater ability to adsorb Cd than corn straw biochar (CSB). In addition, ultraviolet light aging is particularly effective in increasing heavy metal adsorption.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Suelo/química , Carbón Orgánico/química , Adsorción , Oryza/química , Zea mays
3.
Bioresour Bioprocess ; 11(1): 17, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38647810

RESUMEN

Cell immobilization plays an important role in biocatalysis for high-value products. It is necessary to maintain the viability of immobilized cells for bioconversion using viable cells as biocatalysts. In this study, a novel polyester nonwoven chemostat was designed for cell immobilization to investigate biofilm formation and the dynamic balance between adsorption and desorption of cells on polyester nonwoven. The polyester nonwoven was suitable for cell immobilization, and the cell numbers on the polyester nonwoven can reach 6.5 ± 0.38 log CFU/mL. After adding the polyester nonwoven to the chemostat, the fluctuation phenomenon of free bacterial cells occurred. The reason for this phenomenon was the balance between adsorption and desorption of bacterial cells on the polyester nonwoven. Bacterial cells could adhere to the surface of polyester nonwoven via secreting extracellular polymeric substances (EPS) to form biofilms. As the maturation of biofilms, some dead cells inside the biofilms can cause the detachment of biofilms. This process of continuous adsorption and desorption of cells can ensure that the polyester nonwoven chemostat has lasting biological activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA