Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Biol Rep ; 50(2): 1089-1099, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36399242

RESUMEN

BACKGROUND: Auxin response factors (ARFs) are a class of transcription factors that regulate the expression of auxin-responsive genes and play important functions in plant growth and development. To understand the biological functions of the auxin response factor GhARF2 gene in upland cotton, the coding sequence (CDS) of GhARF2 gene was cloned, and its protein sequence, evolutionary relationship, subcellular localization and expression pattern were analysed. METHODS: The CDS sequence of GhARF2 gene was cloned from upland cotton variety Baimian No.1, and its protein sequence was analyzed by bioinformatics method. The subcellular localization of GhARF2 protein was detected by tobacco epidermal transient transformation system, and the tissue expression and stress expression pattern of GhARF2 were analyzed by quantitative Real­Time PCR (qRT-PCR). RESULTS: The full-length CDS of GhARF2 gene was 2583 bp, encoded 860 amino acids, and had a molecular weight and an isoelectric point of 95.46 KDa and 6.02, respectively. The GhARF2 protein had multiple phosphorylation sites, no transmembrane domain, and secondary structures dominated by random coils and alpha helix. The GhARF2 protein had 3 conserved typical domains of ARF gene family members, including the B3 DNA binding domain, the Auxin_resp domain, and the Aux/IAA domain. Phylogenetic analysis revealed that ARF2 proteins in different species were clustered in the Group A subgroup, in which GhARF2 was closely related to TcARF2 of Theobroma cacao L. (Malvaceae). The subcellular localization results showed that the GhARF2 protein was localized in the nucleus. Analysis of tissue expression pattern showed that the GhARF2 gene was expressed in all tested tissues, with the highest expression levels in sepal, followed by leaf, and the lowest expression levels in fiber. Further stress expression analysis showed that the GhARF2 gene was induced by drought, high-temperature, low-temperature and salt stress, and had different expression patterns under different stress conditions. CONCLUSION: These results established a foundation for understanding the functions of GhARF2 and breeding varieties with high-stress tolerance in cotton.


Asunto(s)
Genoma de Planta , Gossypium , Gossypium/genética , Filogenia , Ácidos Indolacéticos , Familia de Multigenes , Fitomejoramiento , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética
2.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37047620

RESUMEN

Sedoheptulose-1,7-bisphosphatase (SBPase, EC 3.1.3.37) is a key enzyme in the plant Calvin cycle and one of the main rate-limiting enzymes in the plant photosynthesis pathway. Many studies have demonstrated that the SBPase gene plays an important role in plant photosynthetic efficiency, yield, and stress responses; however, few studies have been conducted on the function and expression of the GhSBPase gene in upland cotton. In this study, our results showed that the coding sequence (CDS) of GhSBPase gene was 1182 bp, encoding a protein with 393 amino acids. The GhSBPase protein had adenosine monophosphate (AMP) binding site and a FIG (FBPase/IMPase/glpX) domain, and had six Cys residues and a CGGT(A/Q)C motif that were involved in redox regulation in plants. Evolutionarily, the GhSBPase protein clustered into the dicotyledon subgroup and was most closely related to the tomato SlSBPase protein. Western-blot analysis further indicated that the GhSBPase gene was indeed the gene encoding the SBPase protein in upland cotton. The GhSBPase protein was localized in chloroplast, which was consistent with its function as a key enzyme in photosynthesis. The GhSBPase gene was specifically highly expressed in leaves, and its expression level was significantly lower in a yellow-green leaf mutant than in the wild type. Moreover, the GhSBPase expression was in response to drought, salt, high- and low-temperature stress, and exhibits different expression patterns. The GhSBPase promoter had the cis-acting elements in response to abiotic stress, phytohormone, and light. In addition, the GhSBPase expression was positively correlated with the chlorophyll fluorescence parameters, suggesting that changes in the expression of the GhSBPase had potential applicability in breeding for enhanced cotton photosynthetic efficiency. These results will help to understand the function of the GhSBPase gene in photosynthesis and the adaptability of plants to external stress and provide important gene information for the high-yield breeding of crops in the future.


Asunto(s)
Gossypium , Fitomejoramiento , Gossypium/genética , Gossypium/metabolismo , Fotosíntesis/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
New Phytol ; 235(2): 502-517, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35396723

RESUMEN

Seed yield, determined mainly by seed numbers and seed weight, is the primary target of soybean breeding. Identifying the genes underlying yield-related traits is of great significance. Through joint linkage mapping and a genome-wide association study for 100-seed weight, we cloned GmGA3ox1, a gene encoding gibberellin 3ß-hydroxylase, which is the key enzyme in the gibberellin synthesis pathway. Genome resequencing identified a beneficial GmGA3ox1 haplotype contributing to high seed weight, which was further confirmed by soybean transformants. CRISPR/Cas9-generated gmga3ox1 mutants showed lower seed weight, but promoted seed yield by increasing seed numbers. The gmga3ox1 mutants reduced gibberellin biosynthesis while enhancing photosynthesis. Knockout of GmGA3ox1 resulted in the upregulation of numerous photosynthesis-related genes, particularly the GmRCA family encoding ribulose-1,5-bispho-sphate carboxylase-oxygenase (Rubisco) activases. The basic leucine zipper transcription factors GmbZIP97 and GmbZIP159, which were both upregulated in the gmga3ox1 mutants and induced by the gibberellin synthesis inhibitor uniconazole, could bind to the promoter of GmRCAß and activate its expression. Analysis of genomic sequences with over 2700 soybean accessions suggested that GmGA3ox1 is being gradually utilized in modern breeding. Our results elucidated the important role of GmGA3ox1 in soybean yield. These findings reveal important clues for future high-yield breeding in soybean and other crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Regulación hacia Abajo , Giberelinas/metabolismo , Oxigenasas de Función Mixta , Fotosíntesis , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Semillas/genética , Glycine max/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233340

RESUMEN

CIPK (calcineurin B-like-interacting protein kinase) is a kind of serine/threonine protein kinase widely existing in plants, and it plays an important role in plant growth and development and stress response. To better understand the biological functions of the GhCIPK23 gene in upland cotton, the coding sequence (CDS) of the GhCIPK23 gene was cloned in upland cotton, and its protein sequence, evolutionary relationship, subcellular localization, expression pattern and cis-acting elements in the promoter region were analyzed. Our results showed that the full-length CDS of GhCIPK23 was 1368 bp, encoding a protein with 455 amino acids. The molecular weight and isoelectric point of this protein were 50.83 KDa and 8.94, respectively. The GhCIPK23 protein contained a conserved N-terminal protein kinase domain and C-terminal regulatory domain of the CIPK gene family member. Phylogenetic tree analysis demonstrated that GhCIPK23 had a close relationship with AtCIPK23, followed by OsCIPK23, and belonged to Group A with AtCIPK23 and OsCIPK23. The subcellular localization experiment indicated that GhCIPK23 was located in the plasma membrane. Tissue expression analysis showed that GhCIPK23 had the highest expression in petals, followed by sepals, and the lowest in fibers. Stress expression analysis showed that the expression of the GhCIPK23 gene was in response to drought, salt, low-temperature and exogenous abscisic acid (ABA) treatment, and had different expression patterns under different stress conditions. Further cis-acting elements analysis showed that the GhCIPK23 promoter region had cis-acting elements in response to abiotic stress, phytohormones and light. These results established a foundation for understanding the function of GhCIPK23 and breeding varieties with high-stress tolerance in cotton.


Asunto(s)
Gossypium , Reguladores del Crecimiento de las Plantas , Ácido Abscísico , Aminoácidos/metabolismo , Calcineurina/metabolismo , Regulación de la Expresión Génica de las Plantas , Gossypium/fisiología , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Serina/metabolismo , Estrés Fisiológico/genética , Treonina/metabolismo
5.
Sensors (Basel) ; 19(23)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795146

RESUMEN

Hyperspectral imaging is a nondestructive testing technology that integrates spectroscopy and iconology technologies, which enables us to quickly obtain both internal and external information of objects and identify crop seed varieties. First, the hyperspectral images of ten soybean seed varieties were collected and the reflectance was obtained. Savitzky-Golay smoothing (SG), first derivative (FD), standard normal variate (SNV), fast Fourier transform (FFT), Hilbert transform (HT), and multiplicative scatter correction (MSC) spectral reflectance pretreatment methods were used. Then, the feature wavelengths and feature information of the pretreated spectral reflectance data were extracted using competitive adaptive reweighted sampling (CARS), the successive projections algorithm (SPA), and principal component analysis (PCA). Finally, 5 classifiers, Bayes, support vector machine (SVM), k-nearest neighbor (KNN), ensemble learning (EL), and artificial neural network (ANN), were used to identify seed varieties. The results showed that MSC-CARS-EL had the highest accuracy among the 90 combinations, with training set, test set, and 5-fold cross-validation accuracies of 100%, 100%, and 99.8%, respectively. Moreover, the contribution of spectral pretreatment to discrimination accuracy was higher than those of feature extraction and classifier selection. Pretreatment methods determined the range of the identification accuracy, feature-selective methods and classifiers only changed within this range. The experimental results provide a good reference for the identification of other crop seed varieties.

6.
Molecules ; 25(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31905957

RESUMEN

Convolutional neural network (CNN) can be used to quickly identify crop seed varieties. 1200 seeds of ten soybean varieties were selected, hyperspectral images of both the front and the back of the seeds were collected, and the reflectance of soybean was derived from the hyperspectral images. A total of 9600 images were obtained after data augmentation, and the images were divided into a training set, validation set, and test set with a 3:1:1 ratio. Pretrained models (AlexNet, ResNet18, Xception, InceptionV3, DenseNet201, and NASNetLarge) after fine-tuning were used for transfer training. The optimal CNN model for soybean seed variety identification was selected. Furthermore, the traditional machine learning models for soybean seed variety identification were established by using reflectance as input. The results show that the six models all achieved 91% accuracy in the validation set and achieved accuracy values of 90.6%, 94.5%, 95.4%, 95.6%, 96.8%, and 97.2%, respectively, in the test set. This method is better than the identification of soybean seed varieties based on hyperspectral reflectance. The experimental results support a novel method for identifying soybean seeds rapidly and accurately, and this method also provides a good reference for the identification of other crop seeds.


Asunto(s)
Glycine max/clasificación , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Profundo , Estudios de Factibilidad , Redes Neurales de la Computación , Semillas/clasificación
7.
Int J Mol Sci ; 19(6)2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29882786

RESUMEN

Previous studies have revealed a significant genetic relationship between phosphorus (P)-efficiency and photosynthesis-related traits in soybean. In this study, we used proteome profiling in combination with expression analysis, biochemical investigations, and leaf ultrastructural analysis to identify the underlying physiological and molecular responses. The expression analysis and ultrastructural analysis showed that the photosynthesis key genes were decreased at transcript levels and the leaf mesophyll and chloroplast were severely damaged after low-P stress. Approximately 55 protein spots showed changes under low-P condition by mass spectrometry, of which 17 were involved in various photosynthetic processes. Further analysis revealed the depression of photosynthesis caused by low-P stress mainly involves the regulation of leaf structure, adenosine triphosphate (ATP) synthesis, absorption and transportation of CO2, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. In summary, our findings indicated that the existence of a stringent relationship between P supply and the genomic control of photosynthesis in soybean. As an important strategy to protect soybean photosynthesis, P could maintain the stability of cell structure, up-regulate the enzymes' activities, recover the process of photosystem II (PSII), and induce the expression of low-P responsive genes and proteins.


Asunto(s)
Glycine max/fisiología , Fósforo/metabolismo , Fotosíntesis , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteómica , Glycine max/genética , Estrés Fisiológico
8.
Plant Physiol ; 164(4): 2096-106, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24510763

RESUMEN

Rubisco activase (RCA) catalyzes the activation of Rubisco in vivo and plays a crucial role in regulating plant growth. In maize (Zea mays), only ß-form RCA genes have been cloned and characterized. In this study, a genome-wide survey revealed the presence of an α-form RCA gene and a ß-form RCA gene in the maize genome, herein referred to as ZmRCAα and ZmRCAß, respectively. An analysis of genomic DNA and complementary DNA sequences suggested that alternative splicing of the ZmRCAß precursor mRNA (premRNA) at its 3' untranslated region could produce two distinctive ZmRCAß transcripts. Analyses by electrophoresis and matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry showed that ZmRCAα and ZmRCAß encode larger and smaller polypeptides of approximately 46 and 43 kD, respectively. Transcriptional analyses demonstrated that the expression levels of both ZmRCAα and ZmRCAß were higher in leaves and during grain filling and that expression followed a specific cyclic day/night pattern. In 123 maize inbred lines with extensive genetic diversity, the transcript abundance and protein expression levels of these two RCA genes were positively correlated with grain yield. Additionally, both genes demonstrated a similar correlation with grain yield compared with three C4 photosynthesis genes. Our data suggest that, in addition to the ß-form RCA-encoding gene, the α-form RCA-encoding gene also contributes to the synthesis of RCA in maize and support the hypothesis that RCA genes may play an important role in determining maize productivity.


Asunto(s)
Genes de Plantas , Proteínas de Plantas/genética , Zea mays/enzimología , Zea mays/genética , Secuencia de Aminoácidos , Clonación Molecular , ADN Complementario/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Péptidos/metabolismo , Hojas de la Planta/enzimología , Proteínas de Plantas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Alineación de Secuencia
9.
Plant Cell Environ ; 37(2): 462-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23889314

RESUMEN

Phosphate (Pi) remobilization within a plant is critical for plant survival under Pi-limiting conditions. In this paper, a soybean Pi transporter gene, GmPT1, was characterized. A marked induction of GmPT1 transcript was observed in young leaves, mature leaves and lateral roots during long-term Pi starvation. Transgenic tobacco plants containing the GmPT1 gene were obtained using an Agrobacterium-mediated transformation system. Compared with wild-type plants, transgenic plants showed significant increases in phosphorus-use efficiency (PUE), photosystem II (PSII) function, total dry weight and seed weight under Pi-deficient conditions. GmPT1 expression levels and PUE were determined in a soybean recombinant inbred line population during a pot experiment that was conducted to measure chlorophyll fluorescence parameters, photosynthetic rate (PN ) and seed yield. Correlation analysis revealed that GmPT1 expression levels had significantly positive correlations with seed yield, PUE, PN and the quantum yield of PSII primary photochemistry (ΦPSII ). Expression quantitative trait loci (eQTL) mapping for GmPT1 revealed two eQTLs, one of which coincided with both the physical location of GmPT1 and a QTL associated with seed yield. These results suggest that GmPT1 plays a role in Pi remobilization, and it may be possible to improve soybean seed yields under Pi-limiting conditions by modulating GmPT1 expression levels.


Asunto(s)
Glycine max/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Plantas/genética , Mapeo Cromosómico , Variación Genética , Datos de Secuencia Molecular , Complejo de Proteína del Fotosistema II/fisiología , Plantas Modificadas Genéticamente/metabolismo , Sitios de Carácter Cuantitativo , ARN Mensajero/metabolismo , Nicotiana/genética
10.
J Exp Bot ; 65(1): 47-59, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24170743

RESUMEN

Understanding the genetic basis of Rubisco activase (RCA) gene regulation and altering its expression levels to optimize Rubisco activation may provide an approach to enhance plant productivity. However, the genetic mechanisms and the effect of RCA expression on phenotype are still unknown in soybean. This work analysed the expression of RCA genes and demonstrated that two RCA isoforms presented different expression patterns. Compared with GmRCAα, GmRCAß was expressed at higher mRNA and protein levels. In addition, GmRCAα and GmRCAß were positively correlated with chlorophyll fluorescence parameters and seed yield, suggesting that changes in expression of RCA has a potential applicability in breeding for enhanced soybean productivity. To identify the genetic factors that cause expression level variation of GmRCAß, expression quantitative trait loci (eQTL) mapping was combined with allele mining in a natural population including 219 landraces. The eQTL mapping showed that a combination of both cis- and trans-acting eQTLs might control GmRCAß expression. As promoters can affect both cis- and trans-acting eQTLs by altering cis-acting regulatory elements or transcription factor binding sites, this work subsequently focused on the promoter region of GmRCAß. Single-nucleotide polymorphisms in the GmRCAß promoter were identified and shown to correlate with expression level diversity. These SNPs were classified into two groups, A and B. Further transient expression showed that GUS expression driven by the group A promoter was stronger than that by the group B promoter, suggesting that promoter sequence types could influence gene expression levels. These results would improve understanding how variation within promoters affects gene expression and, ultimately, phenotypic diversity in natural populations.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/enzimología , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Sitios de Carácter Cuantitativo/genética , Ribulosa-Bifosfato Carboxilasa/genética , Alelos , Clorofila/metabolismo , Mapeo Cromosómico , Biología Computacional , Genes Reporteros , Isoenzimas , Fenotipo , Fotosíntesis , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Análisis de Secuencia de ADN , Glycine max/genética , Glycine max/fisiología
11.
Genes Genomics ; 46(4): 423-436, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38324226

RESUMEN

BACKGROUND: Rubisco activase (RCA) is a pivotal enzyme that can catalyse the activation of Rubisco in carbon assimilation pathway. Many studies have shown that RCA may be a potential target for genetic manipulation aimed at enhancing photosynthetic efficiency and crop yield. OBJECTIVE: To understand the biological function of the GhRCAß2 gene in upland cotton, we cloned the coding sequence (CDS) of the GhRCAß2 gene and investigated its sequence features, evolutionary relationship, subcellular localization, promoter sequence and expression pattern. METHODS: The bioinformatics tools were used to analyze the sequence features of GhRCAß2 protein. Transient transformation of Arabidopsis mesophyll protoplasts was performed to determine the subcellular localization of the GhRCAß2 protein. The expression pattern of the GhRCAß2 gene was examined by analyzing transcriptome data and using the quantitative real-time PCR (qRT-PCR). RESULTS: The full-length CDS of GhRCAß2 was 1317 bp, and it encoded a protein with a chloroplast transit peptide. The GhRCAß2 had two conserved ATP-binding domains, and did not have the C-terminal extension (CTE) domain that was unique to the RCA α-isoform in plants. Evolutionarily, GhRCAß2 was clustered in Group A, and had a close evolutionary relationship with the soybean RCA. Western blot analysis demonstrated that GhRCAß2 was immunoreactive to the RCA antibody displaying a molecular weight similar to that of the RCA ß-isoform. The GhRCAß2 protein was found in chloroplast, aligning with its role as a vital enzyme in the process of photosynthesis. The GhRCAß2 gene had a leaf tissue-specific expression pattern, and the yellow-green leaf mutant exhibited a decreased expression of GhRCAß2 in comparison to the wild-type cotton plants. The GhRCAß2 promoter contained several cis-acting elements that respond to light, phytohormones and stress, suggesting that the expression of GhRCAß2 may be regulated by these factors. An additional examination of stress response indicated that GhRCAß2 expression was influenced by cold, heat, salt, and drought stress. Notably, diverse expression pattern was observed across different stress conditions. Additionally, low phosphorus and low potassium stress may result in a notable reduction in the expression of GhRCAß2 gene. CONCLUSION: Our findings will establish a basis for further understanding the function of the GhRCAß2 gene, as well as providing valuable genetic knowledge to improve cotton photosynthetic efficiency and yield under challenging environmental circumstances.


Asunto(s)
Arabidopsis , Gossypium , Gossypium/genética , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Activador de Tejido Plasminógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Arabidopsis/metabolismo
12.
Planta ; 234(4): 815-27, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21638036

RESUMEN

Filamentation temperature-sensitive H (FtsH) is an ATP-dependent zinc metalloprotease involved in diverse biological functions. There are 12 FtsH proteins in Arabidopsis, among which AtFtsH2 plays an important role in regulating the turnover of photosystem II (PSII) reaction center D1 protein and the development of the photosynthetic apparatus. Here, we have identified 11 FtsH genes in the soybean genome by a bioinformatics approach. These soybean FtsH genes corresponded to seven Arabidopsis FtsH genes, suggesting that the main characteristics of soybean FtsH genes were formed before the evolutionary split of soybean and Arabidopsis. Phylogenetic analyses allowed us to clone a soybean AtFtsH2-like gene designated as GmFtsH9. The predicted protein of GmFtsH9 consists of 690 amino acids and contains three typical FtsH proteins conserved domains. The expression level of GmFtsH9 was determined in a soybean recombinant inbred line population under a pot experiment conducted for measuring chlorophyll a fluorescence transient parameters, photosynthetic CO(2) fixation rate (P (N)), and seed yield. Expression quantitative trait loci (eQTL) mapping revealed two trans-acting eQTLs for GmFtsH9. The significant correlation of gene expression level with chlorophyll a fluorescence transient parameters and the presence of overlapping eQTL (QTL) between gene expression level and chlorophyll a fluorescence transient parameters indicated that GmFtsH9 could be involved in regulating PSII function. These results further lead to the understanding of the mechanism underlying FtsH gene expression, and contribute to the development of marker-assisted selection breeding programs for modulating soybean FtsH gene expression.


Asunto(s)
Clorofila/metabolismo , Glycine max/enzimología , Metaloproteasas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Secuencia de Aminoácidos , Secuencia de Bases , Ciclo del Carbono , Clorofila A , Mapeo Cromosómico , Clonación Molecular , Biología Computacional , Secuencia Conservada , ADN de Plantas/genética , Fluorescencia , Genoma de Planta/genética , Luz , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloproteasas/genética , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ARN de Planta/genética , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Glycine max/genética , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo
13.
Genes (Basel) ; 10(6)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234429

RESUMEN

Class III peroxidases (PODs), commonly known as secretable class III plant peroxidases, are plant-specific enzymes that play critical roles in not only plant growth and development but also the responses to biotic and abiotic stress. In this study, we identified 198 nonredundant POD genes, designated GhPODs, with 180 PODs being predicted to secrete into apoplast. These POD genes were divided into 10 sub-groups based on their phylogenetic relationships. We performed systematic bioinformatic analysis of the POD genes, including analysis of gene structures, phylogenetic relationships, and gene expression profiles. The GhPODs are unevenly distributed on both upland cotton sub-genome A and D chromosomes. Additionally, these genes have undergone 15 segmental and 12 tandem duplication events, indicating that both segmental and tandem duplication contributed to the expansion of the POD gene family in upland cotton. Ka/Ks analysis suggested that most duplicated GhPODs experienced negative selection, with limited functional divergence during the duplication events. High-throughput RNA-seq data indicated that most highly expressed genes might play significant roles in root, stem, leaf, and fiber development. Under K or P deficiency conditions, PODs showed different expression patterns in cotton root and leaf. This study provides useful information for further functional analysis of the POD gene family in upland cotton.


Asunto(s)
Gossypium/genética , Peroxidasas/genética , Filogenia , Proteínas de Plantas/genética , Secuencia de Aminoácidos/genética , Cromosomas de las Plantas/genética , Secuencia Conservada/genética , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Gossypium/enzimología , Familia de Multigenes/genética , Estrés Fisiológico/genética , Tetraploidía
14.
Sci Rep ; 6: 21060, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879005

RESUMEN

Proteomics was employed to investigate the molecular mechanisms of apoplastic response to potassium(K)-deficiency in cotton. Low K (LK) treatment significantly decreased the K and protein contents of xylem sap. Totally, 258 peptides were qualitatively identified in the xylem sap of cotton seedlings, of which, 90.31% were secreted proteins. Compared to the normal K (NK), LK significantly decreased the expression of most environmental-stress-related proteins and resulted in a lack of protein isoforms in the characterized proteins. For example, the contents of 21 Class Ш peroxidase isoforms under the LK were 6 to 44% of those under the NK and 11 its isoforms were lacking under the LK treatment; the contents of 3 chitinase isoforms under LK were 11-27% of those under the NK and 2 its isoforms were absent under LK. In addition, stress signaling and recognizing proteins were significantly down-regulated or disappeared under the LK. In contrast, the LK resulted in at least 2-fold increases of only one peroxidase, one protease inhibitor, one non-specific lipid-transfer protein and histone H4 and in the appearance of H2A. Therefore, K deficiency decreased plant tolerance to environmental stresses, probably due to the significant and pronounced decrease or disappearance of a myriad of stress-related proteins.


Asunto(s)
Ambiente , Gossypium/fisiología , Deficiencia de Potasio/metabolismo , Potasio/metabolismo , Proteoma/metabolismo , Estrés Fisiológico , Xilema/metabolismo , Evolución Biológica , Análisis por Conglomerados , Perfilación de la Expresión Génica , Gossypium/clasificación , Minerales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carácter Cuantitativo Heredable , Plantones
15.
Front Plant Sci ; 7: 628, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242832

RESUMEN

Rubisco activase (RCA), a key photosynthetic protein, catalyses the activation of Rubisco and thus plays an important role in photosynthesis. Although the RCA gene has been characterized in a variety of species, the molecular mechanism regulating its transcription remains unclear. Our previous studies on RCA gene expression in soybean suggested that expression of this gene is regulated by trans-acting factors. In the present study, we verified activity of the GmRCAα promoter in both soybean and Arabidopsis and used a yeast one-hybrid (Y1H) system for screening a leaf cDNA expression library to identify transcription factors (TFs) interacting with the GmRCAα promoter. Four basic leucine zipper (bZIP) TFs, GmbZIP04g, GmbZIP07g, GmbZIP1, and GmbZIP71, were isolated, and GmbZIP04g and GmbZIP07g were confirmed as able to bind to a 21-nt G-box-containing sequence. Additionally, the expression patterns of GmbZIP04g, GmbZIp07g, and GmRCAα were analyzed in response to abiotic stresses and during a 24-h period. Our study will help to advance elucidation of the network regulating GmRCAα transcription.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA