Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 164(3): 580, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824663

RESUMEN

Research into induced pluripotent stem cells (iPSCs) has expanded at a remarkable pace in the decade since Shinya Yamanaka and Kazutoshi Takahashi first reported their groundbreaking discovery in 2006. This Timeline highlights the key events in the development of this field, including basic insights into the production of iPSCs and how they have been applied to improve our understanding and treatment of human disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Investigación con Células Madre/historia , Técnicas de Cultivo de Célula , Historia del Siglo XXI , Humanos , Trasplante de Células Madre
2.
Mol Cell ; 46(2): 159-70, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22445485

RESUMEN

It is a long-held paradigm that cell fusion reprograms gene expression but the extent of reprogramming and whether it is affected by the cell types employed remain unknown. We recently showed that the silencing of somatic genes is attributable to either trans-acting cellular environment or cis-acting chromatin context. Here, we examine how trans- versus cis-silenced genes in a somatic cell type behave in fusions to another somatic cell type or to embryonic stem cells (ESCs). We demonstrate that while reprogramming of trans-silenced somatic genes occurs in both cases, reprogramming of cis-silenced somatic genes occurs only in somatic-ESC fusions. Importantly, ESCs reprogram the somatic genome in two distinct phases: trans-reprogramming occurs rapidly, independent of DNA replication, whereas cis-reprogramming occurs with slow kinetics requiring DNA replication. We also show that pluripotency genes Oct4 and Nanog are cis-silenced in somatic cells. We conclude that cis-reprogramming capacity is a fundamental feature distinguishing ESCs from somatic cells.


Asunto(s)
Fusión Celular , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Replicación del ADN , Silenciador del Gen , Cinética , Ratones
3.
Genome Res ; 24(2): 267-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24310002

RESUMEN

Both diffusible factors acting in trans and chromatin components acting in cis are implicated in gene regulation, but the extent to which either process causally determines a cell's transcriptional identity is unclear. We recently used cell fusion to define a class of silent genes termed "cis-silenced" (or "occluded") genes, which remain silent even in the presence of trans-acting transcriptional activators. We further showed that occlusion of lineage-inappropriate genes plays a critical role in maintaining the transcriptional identities of somatic cells. Here, we present, for the first time, a comprehensive map of occluded genes in somatic cells. Specifically, we mapped occluded genes in mouse fibroblasts via fusion to a dozen different rat cell types followed by whole-transcriptome profiling. We found that occluded genes are highly prevalent and stable in somatic cells, representing a sizeable fraction of silent genes. Occluded genes are also highly enriched for important developmental regulators of alternative lineages, consistent with the role of occlusion in safeguarding cell identities. Alongside this map, we also present whole-genome maps of DNA methylation and eight other chromatin marks. These maps uncover a complex relationship between chromatin state and occlusion. Furthermore, we found that DNA methylation functions as the memory of occlusion in a subset of occluded genes, while histone deacetylation contributes to the implementation but not memory of occlusion. Our data suggest that the identities of individual cell types are defined largely by the occlusion status of their genomes. The comprehensive reference maps reported here provide the foundation for future studies aimed at understanding the role of occlusion in development and disease.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , Secuencias Reguladoras de Ácidos Nucleicos , Transactivadores/genética , Transcripción Genética , Animales , Fusión Celular , Línea Celular , Cromatina/genética , Metilación de ADN/genética , Genoma , Histonas/genética , Histonas/metabolismo , Ratones , Ratas
4.
J Immunol ; 185(1): 410-7, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20511547

RESUMEN

Ikaros and Notch are transcriptional regulators essential for normal T cell development. Aberrant activation of Notch target genes is observed in Ikaros-deficient thymocytes as well as leukemia cell lines. However, it is not known whether Notch deregulation plays a preferential or obligatory role in the leukemia that arise in Ikaros null (Ik(-/-)) mice. To answer this question, the expression of the DNA-binding Notch target gene activator RBP-Jkappa was abrogated in Ik(-/-) double-positive thymocytes. This was accomplished through conditional inactivation using CD4-Cre transgenic mice containing floxed RBP-Jkappa alleles (RBPJ(fl/fl)). Ik(-/-) x RBPJ(fl/fl) x CD4-Cre(+) transgenic mice develop clonal T cell populations in the thymus that escape to the periphery, with similar kinetics and penetrance as their CD4-Cre(-) counterparts. The clonal populations do not display increased RBP-Jkappa expression compared with nontransformed thymocytes, suggesting there is no selection for clones that have not fully deleted RBP-Jkappa. However, RBPJ-deficient clonal populations do not expand as aggressively as their RBPJ-sufficient counterparts, suggesting a qualitative role for deregulated Notch target gene activation in the leukemogenic process. Finally, these studies show that RBP-Jkappa plays no role in Notch target gene repression in double-positive thymocytes but rather that it is Ikaros that is required for the repression of these genes at this critical stage of T cell development.


Asunto(s)
Marcación de Gen , Factor de Transcripción Ikaros/deficiencia , Factor de Transcripción Ikaros/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Inmunofenotipificación , Leucemia Experimental/genética , Receptores Notch/antagonistas & inhibidores , Receptores Notch/genética , Animales , Línea Celular , Línea Celular Tumoral , Silenciador del Gen/inmunología , Factor de Transcripción Ikaros/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/antagonistas & inhibidores , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Leucemia Experimental/inmunología , Leucemia Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores Notch/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología
5.
J Immunol ; 181(9): 6265-74, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18941217

RESUMEN

Both Ikaros and Notch are essential for normal T cell development. Collaborative mutations causing a reduction in Ikaros activity and an increase in Notch activation promote T cell leukemogenesis. Although the molecular mechanisms of this cooperation have been studied, its consequences in thymocyte development remain unexplored. In this study, we show that Ikaros regulates expression of a subset of Notch target genes, including Hes1, Deltex1, pTa, Gata3, and Runx1, in both Ikaros null T cell leukemia lines and Ikaros null primary thymocytes. In Ikaros null leukemia cells, Notch deregulation occurs at both the level of Notch receptor cleavage and expression of Notch target genes, because re-expression of Ikaros in these cells down-regulates Notch target gene expression without affecting levels of intracellular cleaved Notch. In addition, abnormal expression of Notch target genes is observed in Ikaros null double-positive thymocytes, in the absence of detectable intracellular cleaved Notch. Finally, we show that this role of Ikaros is specific to double-positive and single-positive thymocytes because derepression of Notch target gene expression is not observed in Ikaros null double-negative thymocytes or lineage-depleted bone marrow. Thus, in this study, we provide evidence that Ikaros and Notch play opposing roles in regulation of a subset of Notch target genes and that this role is restricted to developing thymocytes where Ikaros is required to appropriately regulate the Notch program as they progress through T cell development.


Asunto(s)
Diferenciación Celular/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Factor de Transcripción Ikaros/fisiología , Receptores Notch/metabolismo , Subgrupos de Linfocitos T/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factor de Transcripción Ikaros/deficiencia , Factor de Transcripción Ikaros/genética , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Leucemia de Células T/patología , Ligandos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores Notch/biosíntesis , Receptores Notch/genética , Receptores Notch/fisiología , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/patología , Factor de Transcripción HES-1 , Ubiquitina-Proteína Ligasas
6.
Cell Stem Cell ; 21(1): 150, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28686865

RESUMEN

This i3 is a data visualization based on the Cell Stem Cell tenth anniversary theme of lineage tracing. Using Scopus citations of Cell Stem Cell research papers, it illustrates both the evolution of the stem cell field and the way new research builds on work that came before. Users can navigate the graphic and the represented papers by stem cell type, organism, and author online at cell.com/i3/cell-stem-cell/lineage. To view this SnapShot, open or download the PDF.


Asunto(s)
Investigación Biomédica , Células Madre/metabolismo , Animales , Humanos , Publicaciones Periódicas como Asunto , Células Madre/citología
7.
Cell Stem Cell ; 18(2): 294, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26849306

RESUMEN

Research into induced pluripotent stem cells (iPSCs) has expanded at a remarkable pace in the decade since Shinya Yamanaka and Kazutoshi Takahashi first reported their groundbreaking discovery in 2006. This Timeline highlights the key events in the development of this field, including basic insights into the production of iPSCs and how they have been applied to improve our understanding and treatment of human disease. To view this Timeline, open or download the PDF. You can also listen to the associated interview with Debbie Sweet, Editor of Cell Stem Cell, and Elena Porro, Editor of Cell. PAPERCLIP.


Asunto(s)
Células Madre Pluripotentes Inducidas , Investigación con Células Madre/historia , Reprogramación Celular , Historia del Siglo XXI , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante
12.
J Biol Chem ; 283(16): 10476-84, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18287091

RESUMEN

Ikaros and Notch1, two regulators of gene transcription, are critically important at many stages of T cell development. Deregulation of Ikaros and Notch activities cooperate to promote T cell leukemogenesis, providing evidence that they function in converging pathways in developing T cells. In this report, a mechanism for Ikaros:Notch cooperativity is described, revealing a non-redundant role for Ikaros in regulating expression of the Notch target gene Hes1 in a leukemia T cell line. We provide evidence that Ikaros directly represses Hes1 in concert with the transcriptional repressor, RBP-Jkappa, allowing for cross-talk between Notch and Ikaros that impacts regulation of CD4 expression. Taken together, these data describe a potential mechanism for Ikaros' function during T cell development and define Ikaros as an obligate repressor of Hes1.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Antígenos CD4/biosíntesis , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factor de Transcripción Ikaros/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Receptor Notch1/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Silenciador del Gen , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Factor de Transcripción HES-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA