Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 849477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548286

RESUMEN

Cadmium (Cd) has detrimental effects on crop plants, whereas, jasmonates (JAs) play a vital role in abiotic stress tolerance in plants. The present study investigated the effects of exogenous application of methyl jasmonate (MeJa) on the physio-biochemical attributes, yield, and quality of two fragrant rice cultivars, i.e., Xiangyaxiangzhan and Meixiangzhan-2 under Cd stress. The experiment was comprised of four treatments, i.e., CK, control (normal conditions); Cd: 100 mg Cd kg-1 of soil; MeJa: exogenous application of MeJa at 20 mM; and Cd + MeJa: 100 mg Cd kg-1 of soil + exogenous MeJa application at 20 mM. Results depicted that Cd toxicity resulted in a substantial reduction of enzymatic activities and non-enzymatic antioxidants, chlorophyll contents, while enhanced oxidative damage in the terms of lipid peroxidation (higher malondialdehyde (MDA) contents), H2O2, and electrolyte leakage. Proline contents were found higher whereas protein and soluble sugars were lower under Cd stress as compared with Ck and Cd + MeJa. Exogenous MeJa application further improved the panicles per pot, spikelets per panicle, seed setting (%), 1,000 grain weight, and yield per pot under Cd stress conditions as compared with non-MeJa applied plant under Cd stress. In addition, exogenous MeJa application enhanced the accumulation of macro (N, P, K, Mg, and Ca) and micronutrients (Mn, Zn, Fe, and Cr) in both cultivars under Cd stress, while reduced the Cd contents in different plant parts. Overall, the contents of Cd in different plant organs were recorded as: root > stem > leaves > grains for all treatments. Comparing both cultivars, the grain Cd contents were higher in Meixiangzhan 2 than Xiangyaxianzhan under Cd contaminated conditions. Conclusively, Cd toxicity impaired growth in rice by affecting physio-biochemical attributes, however, Xiangyaxiangzhan performed better than Meixiangzhan-2 cultivar.

2.
Environ Sci Pollut Res Int ; 26(24): 24748-24757, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31240656

RESUMEN

Cadmium (Cd) toxicity has detrimental effects on plant metabolism and yield formation. This study examined the effects of Cd stress in rice and the possible role of calcium (Ca) in mitigating oxidative damage caused by Cd in two fragrant rice cultivars, i.e., Guixiangzhan and Meixiangzhan 2. The experimental treatments were composed of various Ca and Cd levels as individual, i.e., Ca at 2.5 and 5.0 mg/kg soil (Ca1 and Ca2, respectively), Cd at 50 and 100 mg/kg soil (Cd50 and Cd100, respectively), and combined, i.e., Ca1+Cd50, Ca1+Cd100, Ca2+Cd50, and Ca2+Cd100. Plants without Ca and Cd application were taken as control (CK). Results showed that Cd stress led to a substantial decline in the photosynthetic pigments, i.e., Chl a, Chl b, and carotenoids, while enhanced oxidative damage in terms of increased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and electrolyte leakage (EL) in both rice cultivars. Moreover, Cd stress hampered the activities of enzymatic antioxidants, i.e., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with lowest antioxidant activities were recorded at Cd100. The overall trend (lowest to highest) for antioxidant activities across treatments was recorded as Cd100 < Ca2+Cd100 < Cd50 < Ca1+Cd100 < CK < Ca1 < Ca1+Cd50 < Ca2+Cd50 < Ca2. Similarly, Ca amendment improved the proline, soluble protein, and soluble sugar contents in both rice cultivars under Cd stress condition. Comparing Ca2 with CK, the yield and related components, i.e., number of panicles, spikelets per panicle, seed setting rate, 1000 grain weight, and grain yield, were found to increase by 13.08, 2.39, 4.03, 5.86, and 27.53% for Guixiangzhan and 16.48, 5.19, 6.87, 15.44, and 51.16% for Meixiangzhan, respectively. Furthermore, Cd contents in roots, stems, leaves, and grains increased with increased Cd concentration applied and reduced with Ca amendment. The Cd contents in grains for all Ca+Cd levels are statistically at par with each other and significantly lower (P < 0.05) than those for individual Cd application. Hence, Ca amendment can be an appropriate approach to ameliorate the toxic effects of Cd in crops grown under Cd-contaminated soils.


Asunto(s)
Antioxidantes/química , Cadmio/metabolismo , Calcio/metabolismo , Oryza/metabolismo , Antioxidantes/metabolismo , Cadmio/química , Calcio/química , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Peroxidasa/metabolismo , Peroxidasas/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Semillas/metabolismo , Suelo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA