Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NMR Biomed ; : e5117, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38356104

RESUMEN

It has been shown using proton magnetic resonance spectroscopy (1 H MRS) that, in a group of females, whole-body insulin resistance was more closely related to accumulation of saturated intramyocellular lipid (IMCL) than to IMCL concentration alone. This has not been investigated in males. We investigated whether age- and body mass index-matched healthy males differ from the previously reported females in IMCL composition (measured as CH2 :CH3 ) and IMCL concentration (measured as CH3 ), and in their associations with insulin resistance. We ask whether saturated IMCL accumulation is more strongly associated with insulin resistance than other ectopic and adipose tissue lipid pools and remains a significant predictor when these other pools are taken into account. In this group of males, who had similar overall insulin sensitivity to the females, IMCL was similar between sexes. The males demonstrated similar and even stronger associations of IMCL with insulin resistance, supporting the idea that a marker reflecting the accumulation of saturated IMCL is more strongly associated with whole-body insulin resistance than IMCL concentration alone. However, this marker ceased to be a significant predictor of whole-body insulin resistance after consideration of other lipid pools, which implies that this measure carries no more information in practice than the other predictors we found, such as intrahepatic lipid and visceral adipose tissue. As the marker of saturated IMCL accumulation appears to be related to these two predictors and has a much smaller dynamic range, this finding does not rule out a role for it in the pathogenesis of insulin resistance.

2.
J Lipid Res ; 60(7): 1323-1332, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048405

RESUMEN

Intramyocellular lipid (IMCL) accumulation has been linked to both insulin-resistant and insulin-sensitive (athletes) states. Biochemical analysis of intramuscular triglyceride composition is confounded by extramyocellular triglycerides in biopsy samples, and hence the specific composition of IMCLs is unknown in these states. 1H magnetic resonance spectroscopy (MRS) can be used to overcome this problem. Thus, we used a recently validated 1H MRS method to compare the compositional saturation index (CH2:CH3) and concentration independent of the composition (CH3) of IMCLs in the soleus and tibialis anterior muscles of 16 female insulin-resistant lipodystrophic subjects with that of age- and gender-matched athletes (n = 14) and healthy controls (n = 41). The IMCL CH2:CH3 ratio was significantly higher in both muscles of the lipodystrophic subjects compared with controls but was similar in athletes and controls. IMCL CH2:CH3 was dependent on the IMCL concentration in the controls and, after adjusting the compositional index for quantity (CH2:CH3adj), could distinguish lipodystrophics from athletes. This CH2:CH3adj marker had a stronger relationship with insulin resistance than IMCL concentration alone and was inversely related to VO2max The association of insulin resistance with the accumulation of saturated IMCLs is consistent with a potential pathogenic role for saturated fat and the reported benefits of exercise and diet in insulin-resistant states.


Asunto(s)
Ácidos Grasos/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Adulto , Citidililtransferasa de Colina-Fosfato/genética , Ejercicio Físico/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Lamina Tipo A/genética , Lipodistrofia/genética , Lipodistrofia/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Triglicéridos/metabolismo
3.
Lancet Diabetes Endocrinol ; 2(8): 619-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24969835

RESUMEN

BACKGROUND: The thyroid hormone receptor α gene (THRA) transcript is alternatively spliced to generate either thyroid hormone receptor (TR)α1 or a non-hormone-binding variant protein, TRα2, the function of which is unknown. Here, we describe the first patients identified with a mutation in THRA that affects both TRα1 and TRα2, and compare them with patients who have resistance to thyroid hormone owing to a mutation affecting only TRα1, to delineate the relative roles of TRα1 and TRα2. METHODS: We did clinical, biochemical, and genetic analyses of an index case and her two sons. We assessed physical and radiological features, thyroid function, physiological and biochemical markers of thyroid hormone action, and THRA sequence. FINDINGS: The patients presented in childhood with growth failure, developmental delay, and constipation, which improved after treatment with thyroxine, despite normal concentrations of circulating thyroid hormones. They had similar clinical (macrocephaly, broad faces, skin tags, motor dyspraxia, slow speech), biochemical (subnormal ratio of free thyroxine:free tri-iodothyronine [T3], low concentration of total reverse T3, high concentration of creatine kinase, mild anaemia), and radiological (thickened calvarium) features to patients with TRα1-mediated resistance to thyroid hormone, although our patients had a heterozygous mis-sense mutation (Ala263Val) in both TRα1 and TRα2 proteins. The Ala263Val mutant TRα1 inhibited the transcriptional function of normal receptor in a dominant-negative fashion. By contrast, function of Ala263Val mutant TRα2 matched its normal counterpart. In vitro, high concentrations of T3 restored transcriptional activity of Ala263Val mutant TRα1, and reversed the dominant-negative inhibition of its normal counterpart. High concentrations of T3 restored expression of thyroid hormone-responsive target genes in patient-derived blood cells. INTERPRETATION: TRα1 seems to be the principal functional product of the THRA gene. Thyroxine treatment alleviates hormone resistance in patients with mutations affecting this gene, possibly ameliorating the phenotype. These findings will help the diagnosis and treatment of other patients with resistance to thyroid hormone resulting from mutations in THRA. FUNDING: Wellcome Trust, NIHR Cambridge Biomedical Research Centre, Marie Curie Actions, Foundation for Development of Internal Medicine in Europe.


Asunto(s)
Empalme Alternativo , Mutación Missense , Receptores alfa de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/genética , Adulto , Sustitución de Aminoácidos , Salud de la Familia , Femenino , Apraxia de la Marcha/etiología , Heterocigoto , Humanos , Masculino , Megalencefalia/etiología , Persona de Mediana Edad , Pólipos/etiología , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias Cutáneas/etiología , Trastornos del Habla/etiología , Receptores alfa de Hormona Tiroidea/agonistas , Receptores alfa de Hormona Tiroidea/metabolismo , Síndrome de Resistencia a Hormonas Tiroideas/tratamiento farmacológico , Síndrome de Resistencia a Hormonas Tiroideas/fisiopatología , Tiroxina/uso terapéutico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA