Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Am Chem Soc ; 145(17): 9777-9785, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37075197

RESUMEN

The susceptibility of aqueous dipeptides to photodissociation by deep ultraviolet irradiation is studied by femtosecond spectroscopy supported by density functional theory calculations. The primary photodynamics of the aqueous dipeptides of glycyl-glycine (gly-gly), alalyl-alanine (ala-ala), and glycyl-alanine (gly-ala) show that upon photoexcitation at a wavelength of 200 nm, about 10% of the excited dipeptides dissociate by decarboxylation within 100 ps, while the rest of the dipeptides return to their native ground state. Accordingly, the vast majority of the excited dipeptides withstand the deep ultraviolet excitation. In those relatively few cases, where excitation leads to dissociation, the measurements show that deep ultraviolet irradiation breaks the Cα-C bond rather than the peptide bond. The peptide bond is thereby left intact, and the decarboxylated dipeptide moiety is open to subsequent reactions. The experiments indicate that the low photodissociation yield and in particular the resilience of the peptide bond to dissociation are due to rapid internal conversion from the excited state to the ground state, followed by efficient vibrational relaxation facilitated by intramolecular coupling among the carbonate and amide modes. Thus, the entire process of internal conversion and vibrational relaxation to thermal equilibrium on the dipeptide ground state occurs on a time scale of less than 2 ps.


Asunto(s)
Dipéptidos , Rayos Ultravioleta , Dipéptidos/química , Análisis Espectral , Iones , Alanina
2.
Phys Rev Lett ; 131(5): 053201, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37595218

RESUMEN

We demonstrate that a sodium dimer, Na_{2}(1^{3}Σ_{u}^{+}), residing on the surface of a helium nanodroplet, can be set into rotation by a nonresonant 1.0 ps infrared laser pulse. The time-dependent degree of alignment measured, exhibits a periodic, gradually decreasing structure that deviates qualitatively from that expected for gas-phase dimers. Comparison to alignment dynamics calculated from the time-dependent rotational Schrödinger equation shows that the deviation is due to the alignment dependent interaction between the dimer and the droplet surface. This interaction confines the dimer to the tangential plane of the droplet surface at the point where it resides and is the reason that the observed alignment dynamics is also well described by a 2D quantum rotor model.

3.
Phys Rev Lett ; 131(7): 076002, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37656857

RESUMEN

Superfluid helium nanodroplets are an ideal environment for the formation of metastable, self-organized dopant nanostructures. However, the presence of vortices often hinders their formation. Here, we demonstrate the generation of vortex-free helium nanodroplets and explore the size range in which they can be produced. From x-ray diffraction images of xenon-doped droplets, we identify that single compact structures, assigned to vortex-free aggregation, prevail up to 10^{8} atoms per droplet. This finding builds the basis for exploring the assembly of far-from-equilibrium nanostructures at low temperatures.

4.
Annu Rev Phys Chem ; 73: 323-347, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35081323

RESUMEN

We discuss how Coulomb explosion imaging (CEI), triggered by intense femtosecond laser pulses and combined with laser-induced alignment and covariance analysis of the angular distributions of the recoiling fragment ions, provides new opportunities for imaging the structures of molecules and molecular complexes. First, focusing on gas phase molecules, we show how the periodic torsional motion of halogenated biphenyl molecules can be measured in real time by timed CEI, and how CEI of one-dimensionally aligned difluoroiodobenzene molecules can uniquely identify four structural isomers. Next, focusing on molecular complexes formed inside He nano-droplets, we show that the conformations of noncovalently bound dimers or trimers, aligned in one or three dimensions, can be determined by CEI. Results presented for homodimers of CS2, OCS, and bromobenzene pave the way for femtosecond time-resolved structure imaging of molecules undergoing bimolecular interactions and ultimately chemical reactions.

5.
Phys Rev Lett ; 129(7): 073201, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018694

RESUMEN

Strong-field ionization of nanoscale clusters provides excellent opportunities to study the complex correlated electronic and nuclear dynamics of near-solid density plasmas. Yet, monitoring ultrafast, nanoscopic dynamics in real-time is challenging, which often complicates a direct comparison between theory and experiment. Here, near-infrared laser-induced plasma dynamics in ∼600 nm diameter helium droplets are studied by femtosecond time-resolved x-ray coherent diffractive imaging. An anisotropic, ∼20 nm wide surface region, defined as the range where the density lies between 10% and 90% of the core value, is established within ∼100 fs, in qualitative agreement with theoretical predictions. At longer timescales, however, the width of this region remains largely constant while the radius of the dense plasma core shrinks at average rates of ≈71 nm/ps along and ≈33 nm/ps perpendicular to the laser polarization. These dynamics are not captured by previous plasma expansion models. The observations are phenomenologically described within a numerical simulation; details of the underlying physics, however, remain to be explored.

6.
Biomacromolecules ; 23(12): 5340-5349, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36437734

RESUMEN

The mechanical properties of biomaterials are dictated by the interactions and conformations of their building blocks, typically proteins. Although the macroscopic behavior of biomaterials is widely studied, our understanding of the underlying molecular properties is generally limited. Among the noninvasive and label-free methods to investigate molecular structures, infrared spectroscopy is one of the most commonly used tools because the absorption bands of amide groups strongly depend on protein secondary structure. However, spectral congestion usually complicates the analysis of the amide spectrum. Here, we apply polarized two-dimensional (2D) infrared spectroscopy (IR) to directly identify the protein secondary structures in native silk films cast from Bombyx mori silk feedstock. Without any additional peak fitting, we find that the initial effect of hydration is an increase of the random coil content at the expense of the helical content, while the ß-sheet content is unchanged and only increases at a later stage. This paper demonstrates that 2D-IR can be a valuable tool for characterizing biomaterials.


Asunto(s)
Bombyx , Fibroínas , Animales , Seda/química , Bombyx/química , Fibroínas/química , Espectrofotometría Infrarroja , Materiales Biocompatibles , Amidas , Espectroscopía Infrarroja por Transformada de Fourier
7.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234809

RESUMEN

We used two-dimensional infrared spectroscopy to disentangle the broad infrared band in the amide II vibrational regions of Bombyx mori native silk films, identifying the single amide II modes and correlating them to specific secondary structure. Amide I and amide II modes have a strong vibrational coupling, which manifests as cross-peaks in 2D infrared spectra with frequencies determined by both the amide I and amide II frequencies of the same secondary structure. By cross referencing with well-known amide I assignments, we determined that the amide II (N-H) absorbs at around 1552 and at 1530 cm-1 for helical and ß-sheet structures, respectively. We also observed a peak at 1517 cm-1 that could not be easily assigned to an amide II mode, and instead we tentatively assigned it to a Tyrosine sidechain. These results stand in contrast with previous findings from linear infrared spectroscopy, highlighting the ability of multidimensional spectroscopy for untangling convoluted spectra, and suggesting the need for caution when assigning silk amide II spectra.


Asunto(s)
Bombyx , Amidas/química , Animales , Seda , Espectrofotometría Infrarroja/métodos , Tirosina , Vibración
8.
Phys Rev Lett ; 125(1): 013001, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678640

RESUMEN

Alignment of OCS, CS_{2}, and I_{2} molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS_{2} and I_{2}, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes.

9.
Phys Chem Chem Phys ; 22(6): 3245-3253, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-31995073

RESUMEN

Rotational dynamics of gas phase carbon disulfide (CS2) dimers were induced by a moderately intense, circularly polarized alignment laser pulse and measured as a function of time by Coulomb explosion imaging with an intense fs probe pulse. For the alignment pulse, two different temporal intensity profiles were used: a truncated pulse with a 150 ps turn-on and a 8 ps turn-off, or a 'kick' pulse with a duration of 1.3 ps. For both types of pulse, rich rotational dynamics with characteristic full and fractional revivals were recorded, showing that the intermolecular carbon-carbon axis periodically aligns along the propagation direction of the laser pulses. The truncated pulse gave the strongest alignment, which we rationalize as being due to a flat relative phase between the components in the rotational wave packet generated. Fourier analysis of the alignment dynamics gave well-spaced peaks which were fit to determine the rotational constant, B, and the centrifugal constant, DJ, for the ground state of the dimer. Our results agree with values from high-resolution IR spectroscopy. Numerical simulations of the alignment accurately reproduced the experimental dynamics when the truncated pulse or a low intensity kick pulse was used, but failed to reproduce the dynamics induced by a high intensity kick pulse. We posit that the discrepancy is due to excitation of the intermolecular torsional motion by the kick pulse.

10.
J Chem Phys ; 148(22): 221105, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29907031

RESUMEN

A new technique for obtaining switched wave packets using spectrally truncated chirped laser pulses is demonstrated experimentally and numerically by one-dimensional alignment of both linear and asymmetric top molecules. Using a simple long-pass transmission filter, a pulse with a slow turn-on and a rapid turn-off is produced. The degree of alignment, characterized by ⟨cos2 θ2D⟩, rises along with the pulse intensity and reaches a maximum at the peak of the pulse. After truncation, ⟨cos2 θ2D⟩ drops sharply but exhibits pronounced half and full revivals. The experimental alignment dynamics trace agrees very well with a numerically calculated trace based on the solution of the time-dependent Schrödinger equation. However, the extended periods of field-free alignment of asymmetric tops following pulse truncation reported previously are not reproduced in our work.

11.
Phys Rev Lett ; 119(7): 073202, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949671

RESUMEN

We demonstrate 3D spatial alignment of 3,5-dichloroiodobenzene molecules embedded in helium nanodroplets using nonresonant elliptically polarized 160 ps laser pulses at a 1 kHz repetition rate. Through Coulomb explosion imaging and ion-ion covariance mapping, the 3D alignment is characterized and found to be stronger than that of isolated molecules. The 3D alignment follows the intensity profile of the alignment laser pulse almost adiabatically, except for a delayed response in the helium droplets, which could be exploited for field-free 3D alignment. Our results pave the way for next-generation molecular dynamics and diffraction experiments, performed within a cold helium solvent.

12.
J Chem Phys ; 147(1): 013946, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28688400

RESUMEN

Iodine (I2) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by ⟨cos2𝜃2D⟩, is measured as a function of the laser intensity. The results are well described by ⟨cos2𝜃2D⟩ calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules-here demonstrated by a direct comparison of the droplet results to measurements on a ∼1 K supersonic beam of isolated molecules. This point is further illustrated for a more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied, the highest values of ⟨cos2𝜃2D⟩ achieved in He droplets exceed 0.96.

13.
Phys Chem Chem Phys ; 18(21): 14644-53, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27183104

RESUMEN

Using femtosecond time-resolved extreme ultraviolet absorption spectroscopy, the dissociation dynamics of the haloalkane 1,2-dibromoethane (DBE) have been explored following strong field ionization by femtosecond near infrared pulses at intensities between 7.5 × 10(13) and 2.2 × 10(14) W cm(-2). The major elimination products are bromine atoms in charge states of 0, +1, and +2. The charge state distribution is strongly dependent on the incident NIR intensity. While the yield of neutral fragments is essentially constant for all measurements, charged fragment yields grow rapidly with increasing NIR intensities with the most pronounced effect observed for Br(++). However, the appearance times of all bromine fragments are independent of the incident field strength; these are found to be 320 fs, 70 fs, and 30 fs for Br˙, Br(+), and Br(++), respectively. Transient molecular ion features assigned to DBE(+) and DBE(++) are observed, with dynamics linked to the production of Br(+) products. Neutral Br˙ atoms are produced on a timescale consistent with dissociation of DBE(+) ions on a shallow potential energy surface. The appearance of Br(+) ions by dissociative ionization is also seen, as evidenced by the simultaneous decay of a DBE(+) ionic species. Dicationic Br(++) products emerge within the instrument response time, presumably from Coulomb explosion of triply charged DBE.

14.
J Phys Chem A ; 120(48): 9509-9518, 2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27933918

RESUMEN

The dissociation dynamics of ferrocene are explored following strong field ionization using femtosecond time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy. Employing transitions in the vicinity of the iron 3p (M2,3) edge, the dissociation is monitored from the point of view of the iron atom. With low strong field pump intensities (≈2 × 1013 W cm-2), only ferrocenium cations are produced, and their iron 3p absorption spectrum is reported. It very closely resembles the 3p spectrum of atomic Fe+ ions but is red-shifted by 0.8 eV. With the aid of time-dependent density functional theory calculations, the spectrum is assigned to a combination of doublet and quartet spin states of ferrocenium ions. Ionization with more intense strong field pump pulses (≥6 × 1013 W cm-2) leads predominantly to the prompt production of ferrocenium ions that dissociate to give the spectral signature of bare Fe+ ions within 240 ± 80 fs. Within the temporal resolution of the experiment (≈40 fs), no spectral intermediates are observed, suggesting that the dissociation process occurs directly from the excited ferrocenium ion and that the bonds between the iron center and both cyclopentadienyl rings are broken almost simultaneously in an asynchronous concerted decay process. No evidence of slower dissociation channels is observed at a pump-probe delay of 250 ps, suggesting that all energy is very rapidly routed into dissociative states.

15.
J Chem Phys ; 145(23): 234313, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28010094

RESUMEN

Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (∼58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural rearrangements.

16.
Phys Chem Chem Phys ; 16(2): 489-96, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24092279

RESUMEN

The photoelectron imaging of the indigo carmine dianion is used to demonstrate the effects of resonance excitation, pulse duration and pulse intensity on the photoelectron spectra and angular distributions of a dianion. Excitation of the S1 state leads to an aligned distribution of excited state dianions. The photoelectron angular distribution following subsequent photodetachment within a femtosecond laser pulse is primarily determined by the repulsive Coulomb barrier. Extending the timescale for photodetachment to nanoseconds leads to dramatic changes in both the spectral and angular distributions. These observations are explained in terms of statistical detachment of electrons, either from the monoanion, or from the ground state of the dianion following a number of photon cycles through the S1 ← S0 transition. At high intensity, new electron emission channels open up, leading to emission below the repulsive Coulomb barrier. This has been assigned to strong-field induced detachment and the effect of an electric field on the Coulomb barrier is discussed in terms of the photoelectron spectra and angular distributions.

17.
Phys Chem Chem Phys ; 16(29): 15043-52, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24955934

RESUMEN

Many properties of isolated multiply-charged anions (MCAs) are dictated by the strong intra-molecular Coulomb interactions that are present. The most striking property of MCAs is a long-range repulsive Coulomb barrier (RCB) that arises from the repulsive interaction between an electron and an anion which must be overcome to form a MCA. Excited states provide a route to probing this RCB and the focus of this Perspective is on recent photoelectron experiments, including angularly and temporally resolved, that have provided detailed physical insight into the RCB surfaces, their anisotropy, and their use to monitor molecular dynamics in real-time. An outlook provides some future prospects that studies on MCAs provide in terms of monitoring structural, charge-migration, and solvation dynamics.

18.
Phys Chem Chem Phys ; 16(2): 550-62, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24154571

RESUMEN

The excited state dynamics of resorcinol (1,3-dihydroxybenzene) following UV excitation at a range of pump wavelengths, 278 ≥ λ ≥ 255 nm, have been investigated using a combination of time-resolved velocity map ion imaging and ultrafast time-resolved ion yield measurements coupled with complementary ab initio calculations. After excitation to the 1(1)ππ* state we extract a timescale, τ1, for excited state relaxation that decreases as a function of excitation energy from 2.70 ns to ~120 ps. This is assigned to competing relaxation mechanisms. Tunnelling beneath the 1(1)ππ*/(1)πσ* conical intersection, followed by coupling onto the dissociative (1)πσ* state, yields H atoms born with high kinetic energy (~5000 cm(-1)). This mechanism is in competition with an internal conversion process that is able to transfer population from the photoexcited 1(1)ππ* state back to a vibrationally excited ground state, S0*. When exciting between 264-260 nm a second decay component, τ2, is observed and we put forth several possible explanations as to the origins of τ2, including conformer specific dynamics. Excitation with 237 nm light (above the 1(1)ππ*/(1)πσ* conical intersection) yields high kinetic energy H atoms (~11,000 cm(-1)) produced in ~260 fs, in line with a mechanism involving ultrafast coupling between the 1(1)ππ* (or 2(1)ππ*) and (1)πσ* state followed by dissociation. The results presented highlight the profound effect the presence of additional functional groups, and more specifically the precise location of the functional groups, can have on the excited state dynamics of model heteroaromatic systems following UV excitation.

19.
J Phys Chem A ; 118(40): 9438-44, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25189271

RESUMEN

We have investigated the effects of quantum tunneling on the photodissociation dynamics of ammonia, following below and above barrier photoexcitation of low-lying levels of the ν'(2) umbrella mode of the NH(3) à state (NH(3) (Ã)). This barrier separates the local minimum of the vertical Franck­Condon region from the NH(3) (Ã)/NH(3) (X̃) conical intersection (CI) which can be accessed along the N­H stretch coordinate. Two complementary techniques, time-resolved photoelectron spectroscopy (TR-PES) and time-resolved total kinetic energy release spectroscopy (TR-TKER), have been utilized to directly measure, for the first time, vibrational level dependent excited state lifetimes and N­H dissociation time scales as well as photoproduct final energy distributions. Interestingly, ν'(2) even/odd dependencies are observed in the measured time constants and NH(2) internal energy spectra, which are attributed to tunneling through a barrier, whose magnitude is dependent on the planarity of NH(3) in the à state and direct versus indirect dissociation at the NH(3) (Ã)/NH(3) (X̃) conical intersection.

20.
J Phys Chem Lett ; 15(18): 4933-4939, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38686860

RESUMEN

The vibrational coupling between protein backbone modes and the role of water interactions are important topics in biomolecular spectroscopy. Our work reports the first study of the coupling between amide I and amide A modes within peptides and proteins with secondary structure and water contacts. We use two-color two-dimensional infrared (2D IR) spectroscopy and observe cross peaks between amide I and amide A modes. In experiments with peptides with different secondary structures and side chains, we observe that the spectra are sensitive to secondary structure. Water interactions affect the cross peaks, which may be useful as probes for the accessibility of protein sites to hydration water. Moving to two-color 2D IR spectra of proteins, the data demonstrate that the cross peaks integrate the sensitivities of both amide I and amide A spectra and that a two-color detection scheme may be a promising tool for probing secondary structures in proteins.


Asunto(s)
Amidas , Proteínas , Espectrofotometría Infrarroja , Agua , Espectrofotometría Infrarroja/métodos , Agua/química , Proteínas/química , Amidas/química , Estructura Secundaria de Proteína , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA