Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673777

RESUMEN

Streptomyces are well-known for producing bioactive secondary metabolites, with numerous antimicrobials essential to fight against infectious diseases. Globally, multidrug-resistant (MDR) microorganisms significantly challenge human and veterinary diseases. To tackle this issue, there is an urgent need for alternative antimicrobials. In the search for potent agents, we have isolated four Streptomyces species PC1, BT1, BT2, and BT3 from soils collected from various geographical regions of the Himalayan country Nepal, which were then identified based on morphology and 16S rRNA gene sequencing. The relationship of soil microbes with different Streptomyces species has been shown in phylogenetic trees. Antimicrobial potency of isolates was carried out against Staphylococcus aureus American Type Culture Collection (ATCC) 43300, Shigella sonnei ATCC 25931, Salmonella typhi ATCC 14028, Klebsiella pneumoniae ATCC 700603, and Escherichia coli ATCC 25922. Among them, Streptomyces species PC1 showed the highest zone of inhibition against tested pathogens. Furthermore, ethyl acetate extracts of shake flask fermentation of these Streptomyces strains were subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis for their metabolic comparison and Global Natural Products Social Molecular Networking (GNPS) web-based molecular networking. We found very similar metabolite composition in four strains, despite their geographical variation. In addition, we have identified thirty-seven metabolites using LC-MS/MS analysis, with the majority belonging to the diketopiperazine class. Among these, to the best of our knowledge, four metabolites, namely cyclo-(Ile-Ser), 2-n-hexyl-5-n-propylresorcinol, 3-[(6-methylpyrazin-2-yl) methyl]-1H-indole, and cyclo-(d-Leu-l-Trp), were detected for the first time in Streptomyces species. Besides these, other 23 metabolites including surfactin B, surfactin C, surfactin D, and valinomycin were identified with the help of GNPS-based molecular networking.


Asunto(s)
Filogenia , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , ARN Ribosómico 16S/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Microbiología del Suelo , Espectrometría de Masas en Tándem , Metabolómica/métodos , Staphylococcus aureus/efectos de los fármacos , Antiinfecciosos/farmacología
2.
Molecules ; 26(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34771092

RESUMEN

Citrus species of plants are among the most commercially cultivated crops, mainly for their fruit. Besides, the generally consumed flesh inside the fruit, the peel is quite important too. Essential oils extracted from the peel have a history of being used by humankind for centuries. These essential oils are rich in antioxidants and antimicrobial agents. Comparative investigation of volatile constituents, and antioxidant and antimicrobial activities were undertaken. The essential oils were evaluated through gas chromatography-mass spectrometry (GC-MS), and enantiomeric composition by chiral GC-MS. Similarly, the antioxidant properties were evaluated by 2,2-diphenyl-1-picrylhydrazyl scavenging assay, and antimicrobial activities were assayed using the disk diffusion method. The highest extraction yield of 1.83% was observed in Citrus sinensis Osbeck. GC-MS analysis showed limonene (63.76-89.15%), γ-terpinene (0.24-6.43%), ß-pinene (0.15-6.09%), linalool (0.35-3.5%), sabinene (0.77-2.17%), myrcene (0.74-1.75%), α-terpineol (0.28-1.15%), and α-pinene (0.2-0.58%) as the major constituents of the essential oil of the Citrus species studied. For the first time, through our study, chiral terpenoids have been observed from Citrus grandis Osbeck essential oil. The order of antioxidant activity is as follows: Citrus grandis Osbeck red flesh > Citrus reticulata Blanco > Citrus sinensis Osbeck > Citrus grandis Osbeck white flesh. Except for Citrus grandis Osbeck white flesh (52.34 µL/mL), all samples demonstrated stronger antioxidant activities than those of the positive control, quercetin (5.60 µL/mL). Therefore, these essential oils can be used as a safe natural antioxidant to prevent product oxidation. Likewise, citrus peel essential oil showed antimicrobial activity against tested bacterial strains, albeit marginal.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Compuestos Orgánicos Volátiles/farmacología , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Citrus/química , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nepal , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Aceites de Plantas/química , Aceites de Plantas/aislamiento & purificación , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/aislamiento & purificación
3.
Food Sci Nutr ; 12(5): 3025-3045, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726403

RESUMEN

In the middle of an ever-changing landscape of diabetes care, precision medicine, and lifestyle therapies are becoming increasingly important. Dietary polyphenols are like hidden allies found in our everyday meals. These biomolecules, found commonly in fruits, vegetables, and various plant-based sources, hold revolutionary potential within their molecular structure in the way we approach diabetes and its intimidating consequences. There are currently numerous types of diabetes medications, but they are not appropriate for all patients due to limitations in dosages, side effects, drug resistance, a lack of efficacy, and ethnicity. Currently, there has been increased interest in practicing herbal remedies to manage diabetes and its related complications. This article aims to summarize the potential of dietary polyphenols as a foundation in the treatment of diabetes and its associated consequences. We found that most polyphenols inhibit enzymes linked to diabetes. This review outlines the potential benefits of selected molecules, including kaempferol, catechins, rosmarinic acid, apigenin, chlorogenic acid, and caffeic acid, in managing diabetes mellitus as these compounds have exhibited promising results in in vitro, in vivo, in silico, and some preclinical trials study. This encompassing exploration reveals the multifaceted impact of polyphenols not only in mitigating diabetes but also in addressing associated conditions like inflammation, obesity, and even cancer. Their mechanisms involve antioxidant functions, immune modulation, and proinflammatory enzyme regulation. Furthermore, these molecules exhibit anti-tumor activities, influence cellular pathways, and activate AMPK pathways, offering a less toxic, cost-effective, and sustainable approach to addressing diabetes and its complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA